排序:
默认
按更新时间
按访问量

0025_阈值分割算子的说明

阈值处理,用来分割图像 当图像中物体的灰度值存在差异,可以通过阈值分割的方法提取出目标所在区域   1. auto_threshold auto_threshold(Image : Regions : Sigma : )   直方图自动阈值(自适应阈值) 自动阈值输入必须是是单通道图...

2018-10-17 23:05:38

阅读数:6

评论数:0

0024_缺陷检测(5)

示例:fit_rectangle2_contour_xld.hdev 此示例缺陷检测使用的方法是:blob + 拟合   大体思路如下: 1. 读取图像 2. 预处理,逼近边缘图像,进行抠图 3. 亚像素边缘提取, 并且拟合最小外接矩形 4.求提取的亚像素边缘轮廓上的点到外接矩形四个...

2018-10-16 20:51:25

阅读数:8

评论数:0

0023_缺陷检测(4)

示例四:measure_fill_level.hdev 此示例缺陷检测使用的方法是:模板匹配定位 + 测量   大体思路如下: 1. 采集图像 2. 通过模板匹配定位找到参考线 3. 用测量矩形找液面的边 4. 计算边缘和参考线之间的距离   代码分析如下: * 读取图像 de...

2018-10-14 22:41:16

阅读数:7

评论数:0

0022_缺陷检测(3)

示例三:check_blister.hdev blob分析+特征(定位) 该示例的主要内容是:检测各个药板上的药粒是否存在缺失或者药粒不正确的情况 该示例的实现的方法步骤如下: 1. 读取药粒样板的图像 2. 通过blob+定位等手段,获取药粒样板的区域以及其他相关数据 3. 循环读取...

2018-10-13 23:40:11

阅读数:2

评论数:0

0021_缺陷检测(2)

示例一:novelty_detection_dyn_threshold.hdev blob + 特征   此示例通过局部二值化,然后计算连通域,特征提取,即可判别出是否存在缺陷   此示例有局部二值化,通过: mean_image + dyn_threshold组合   动态阈值分...

2018-10-12 22:07:28

阅读数:7

评论数:0

0020_缺陷检测(1)

常见缺陷的分类: 1. 外部边缘的:凸凹缺陷 2. 内部的:污点、内部凸凹点、瑕疵、孔洞、破损、烫伤、侵染等 3. 划痕   缺陷检测的处理步骤: 1.打光: 划痕的打光: 低角度环形光;划痕打白,背景打暗 同轴光 条光对打 凸点:一定角度的光,凸点亮 凹点:垂直光,凹...

2018-10-11 22:54:07

阅读数:17

评论数:0

0019_畸变矫正(单相机标定)

畸变: 图像形状发生了变形(本来是直线,变成了向内凹或者向外凸的弧线)   单相机畸变矫正的处理步骤: 1. 使用标定板,在halcon中使用标定助手,得到相机的内外参数 可以将内外参数据生成到halcon中 2. 标定后的初始内参形成无畸变的内参 3. 标定后的初始内参与无畸变内参...

2018-10-10 22:05:23

阅读数:14

评论数:0

0018_单相机标定

需要使用的器材:一个带支架的摄像头、标定板   标定板 7*7 ,每个圆点之间的距离为4mm,标定板的厚度为1mm   生成描叙文件(生成一个.descr文件和.ps文件) gen_caltab XNum:X方向标记的个数 YNum:Y方向标记的个数 MarkDist:标记之间的距...

2018-10-09 22:28:51

阅读数:4

评论数:0

0017_Blob分析

Blob分析是识别前的处理。 一般Blob分析所进行的动作如下: 1. 将RGB图像转为灰度图像,因为Blob分析是针对灰度图像进行处理的 2. 预处理(让图像平滑、拉大图像的对比度、去噪等) 让图像平滑的一般方法如下: 中值滤波 均值滤波 高斯滤波   3. 二值化(二值化之后...

2018-10-08 21:35:31

阅读数:9

评论数:0

0016_光源和打光(1)

条光: 从侧面打光 条光照射宽度最好大于检测物体的宽度 条光的安装高度会影响到条光的长度,高度越高,条光的长度越长。   环形光: 安装高度越高,要求环形光的直径越大 了解光源安装距离,过滤掉某些角度光源:例如要求光源安装尺寸高,就可以过滤掉大角度光源,选择用小角度光源。 如果目标...

2018-09-19 21:43:40

阅读数:25

评论数:0

0015_模板匹配(基于形状 其他算子说明)

基于形状的模板匹配过程中,会使用到的一些算子说明:   //连接两个对象元组 concat_obj Objects1:元组对象1 Objects2:元组对象2 ObjectsConcat:输出连接后的元组对象   //均值图像 //多通道灰度值求均值 mean_n Image...

2018-09-18 21:46:09

阅读数:9

评论数:0

0014_模板匹配(基于形状 参数说明)

模板匹配过程总,不管是创建模板还是匹配的算子,参数都比较多,如果我们出现模板匹配不上或者创建模板、匹配时速度很慢的情况,则需要我们调整创建模板和匹配的算子参数。 关于参数的调整,我们可以参照以下的一些说明: 1. 对比度:对比度越小,识别率越高,如果需要物体在任何状态下都能被识别,减小MinC...

2018-09-17 21:55:37

阅读数:9

评论数:0

0013_模板匹配(基于形状 多模板)

基于形状的多模板匹配,有如下几个关键点: 1. 创建模板的时候,需要将模板句柄组成数组 2. 匹配的时候需要使用find_shape_models算子   //多模板匹配 find_shape_models Image:输入图像 ModelIDs:模板句柄(数组) AngleS...

2018-09-16 19:09:08

阅读数:36

评论数:0

0012_仿射变换

仿射变换的简单说明: 对于2D范围内,仿射变换即为2D范围内的平移和旋转变换的结合。 对于2D范围内的仿射变换,使用的是一个3*3的齐次矩阵。 有两种常见的仿射变换方法,两种仿射变换的对比如下: 一种是对轮廓进行仿射变换(方法一) 一种是对具体的2D坐标进行仿射变换(方法二) 分别如下...

2018-09-15 22:21:27

阅读数:18

评论数:0

0011_模板匹配(基于形状)

模板匹配有三个关键的步骤: 1. 创建模板 2. 匹配 3. 释放模板   基于形状的模板匹配,三个关键步骤的常用函数如下: //创建模型 create_shape_model Template:输入图像,其域将用于创建模型 NumLevels:金字塔层数 AngleStart...

2018-09-14 21:43:01

阅读数:51

评论数:0

0010_OCR识别(环形字符识别)

环形字符识别包括如下几个步骤: 1.得到内外半径(Blob分析(二值化、形态学、select_shape)) 2.拉直(极坐标转换) 3. 二值化、分割 4. 识别 5. 显示   极坐标转换前处理的步骤: 在进行极坐标转换之前,需要对环形区域进行处理,从而得到polar_tran...

2018-09-13 21:04:52

阅读数:38

评论数:0

0009_OCR识别(2)-识别之前的一些处理方法说明

在OCR识别过程中,碰到一些情况的处理方法:   1. 如果图像是倒过来的 可以使用mirror_image算子对图像进行镜像处理,将颠倒的图像转正 mirror_image Image:输入图像 ImageMirror:输出镜像后的图像 Mode:翻转轴   2. 关于预处...

2018-09-12 21:32:35

阅读数:11

评论数:0

0008_OCR识别(1)

OCR识别,一般是对灰度图像进行处理。 OCR识别的一般步骤如下: 1. 先进行定位校正 2. 分割,将各个字符断开成不同的联通域 3. 求交集(二值化后的图像区域 和 断完之后的区域) 4. 排序,识别的时候按照顺序来 5. 读ocr分列器 6. 识别 7...

2018-09-11 21:51:23

阅读数:14

评论数:0

0007_拟合前的处理

进行拟合前,需要对获取的轮廓进行分割、联合的处理,有如下相关的算子可以关注下:   分割: //将XLD轮廓分段为直线段、圆弧段、椭圆弧段 segment_contour_xld Contours:输入被分段的轮廓 ContoursSplit:输出分段后的轮廓 Mode:分割轮廓的模...

2018-09-10 23:16:10

阅读数:13

评论数:0

0006_拟合

拟合的一般步骤: 1. 采集图像 2. 预处理,去燥、抠图 3. 边缘提取 4. 分割轮廓(或者联合轮廓) 5. 拟合 6. 或者进行距离的计算、或者显示   拟合的三个重要函数(直线、椭圆、圆) //拟合直线 fit_line_contour_xld Contours:输入...

2018-09-09 21:18:42

阅读数:20

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭