最优资源分配(python3)

这篇博客讨论了一种最优资源分配问题,涉及芯片上不同配置的占用情况。每块芯片的容量为1.25G,支持A(1.25G)、B(2.5G)、C(10G)三种配置。任务是根据用户配置序列,在保证消耗芯片数量最少的情况下,分配资源。若配置超出芯片容量,则忽略该配置并继续下一个。输入包括芯片容量、芯片数量和用户配置序列,输出为芯片占用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最优资源分配

题目描述:

某块业务芯片最小容量单位为1.25G,总容量为M*1.25G,对该芯片资源编号为1,2, ..., M。该芯片支持3种不同的配置,分别为A、B、C。

配置A:占用容量为1.25 * 1 = 1.25G

配置B:占用容量为1.25 * 2 = 2.5G

配置C:占用容量为1.25 * 8 = 10G

某块板卡上集成了N块上述芯片,对芯片编号为1,2,...,N,各个芯片之间彼此独立,不能跨芯片占用资源。给定板卡上芯片数量N、每块芯片容量M、用户按次序配置后,请输出芯片资源占用情况,保证消耗的芯片数量最少。
 

资源分配规则:按照芯片编号从小到大分配所需资源,芯片上资源如果被占用标记为1,没有被占用标记为0。

用户配置序列:用户配置是按次序依次配置到芯片中,如果用户配置序列中某个配置超过了芯片总容量,丢弃该配置,继续遍历用户后续配置。

输入描述:

M:每块芯片容量为M*1.25G,取值范围为1~256

N:每块板卡包含芯片数量,取值范围为1~32

用户配置序列:例如ACABA,长度不超过1000

输出描述:

板卡上每块芯片的占用情况</

Python中,解决平面最优分配问题通常涉及到分配资源或任务给多个单元,以便达到某种优化目标,如最小化总成本或最大化效率。这种问题常见于生产和调度领域,可以使用线性规划或者整数规划方法来求解。一个常见的算法是单纯形法,但如果任务具有离散属性(如每个任务只能分配一次),则可能需要用到整数线性规划(ILP)。这里我们先介绍基本的线性规划版本。 假设我们有一个二维空间(例如地图上的点),每个点代表一个任务(例如配送中心),我们需要从一些仓库(源点)分配货物到各个任务点,使得总运输距离最小。这个问题可以用以下Python代码表示: ```python from pulp import LpProblem, LpMinimize, lpSum, LpVariable # 初始化问题 prob = LpProblem(&#39;PlaneOptimalAllocation&#39;, LpMinimize) # 定义变量:x[i,j] 表示从仓库i到任务j的分配量 x = LpVariable.dicts(&#39;Allocation&#39;, ((sources, tasks)), lowBound=0, cat=&#39;Integer&#39;) # 定义目标函数(最小化总运输距离) costs = [[distance(i, j) for j in tasks] for i in sources] obj = lpSum(costs[i][j] * x[i, j] for i in sources for j in tasks) prob += obj # 定义约束(每个任务只能从一个仓库接收) for task in tasks: prob += lpSum(x[i, task] for i in sources) == 1 # 解决问题 status = prob.solve() # 输出结果 for i, v in x.items(): print(f"From warehouse {i[0]} to task {i[1]}, allocation: {v.varValue}") ``` 其中`distance(i, j)`计算两点之间的距离,`sources`和`taks`是仓库和任务列表。注意这只是一个简化版的示例,实际问题可能还需要考虑其他限制条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值