注意pyspark中替换nan值的问题

在PySpark中,NaN与Null不同。 两者都与空字符串“”不同,因此,可能需要在所有数据集特定填充值的基础上检查每个字符。

本来想使用df.replace(float('nan'),None)将dataframe中的 nan 值全部转化为空,但是测试下来发现,这个函数在spark中除了会将 nan替换掉,还会将 0 也替换成空(此处是int(0),0.0不受影响),因此,要注意。

最后,还是建议用isnan来判断然后替换:

import pyspark.sql.functions as F
df = df.withColumn(column,F.when(F.isnan(F.col(column)),None).otherwise(F.col(column)))
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读