机器学习
奔跑熊
个人对图像处理,机器学习,深度学习等领域比较感兴趣,欢迎多交流!
展开
-
1.2机器学习实战第一课(KNN)
本博文主要参考机器学习KNN中第二个例程实现,若有不当之处,请指教,谢谢!import numpy as npimport operatorfrom os import listdirimport matplotlibimport matplotlib.pyplot as pltdef classify(inX,dataSet,labels,k): """ inX:测原创 2018-01-18 21:15:10 · 270 阅读 · 0 评论 -
机器学习实战第二课(PCA)
PCA作为一种无监督的特征提取方法,在很多场合都能见到其应用,其主要功能是降低数据维度,减少数据冗余。关于PCA的理论知识这里不作太多讲解,大致流程:(1)求数据的每一个维度的均值(2)数据去均值处理(3)构造协方差矩阵(4)求特征值和特征向量(5)取特征值较大的部分以及其对应的特征向量(6)将原始数据映射到新的空间具体实现:import numpy as npimport matplo...原创 2018-03-01 21:59:37 · 606 阅读 · 0 评论 -
python+opencv实现hog+svm的训练
python实现hog+svm训练的网上很多,但是资源svm训练这一块都是通过skimage这个库来实现的,本文从hog特征提取到svm的训练,以及后面的测试都是通过调用opencv来实现的,这样对于基于opencv来做开发的话较为方便,python+opencv通常是在建模的时候会用到,这主要是python脚本语言的高效性。话不多少,下面直接上代码:"""Created on Tue ...原创 2018-04-03 20:13:43 · 38102 阅读 · 84 评论 -
win10 + Dlib + vs2013编译配置
1、下载dlib,由于最近的dlib不支持vs2013,所以需要更低版本的dlib库,这里选用的是v18.16(下载链接:点击打开链接),根据自己需要也可以下载其他的版本。下载完v18.16压缩包后,直接解压,我这里是解压到E:\software目录下2、dlib准备好了,下面就是对dlib库进行编译,这里采用的是cmake3.10.3,网络有些博客提到cmake的版本有可能导致编译的不完整情形,...原创 2018-05-21 20:33:58 · 1203 阅读 · 4 评论 -
SDM人脸对齐系列一:数据预处理
人脸对齐是人脸识别系统中很重要的一个环节,SDM是传统人脸对齐算法中性能较为不错的一种,在今天这个深度学习如火如荼的时代,SDM依旧具有一定的优势。SDM相比深度网络具有模型小,速度快等优点。尽管SDM已经出现了好久,但是网络上对其具体的详细讲解的知识还是比较少,尤其是和训练相关的东西。这几天自己硬着头皮啃了下源码,给出自己的理解。...原创 2018-06-25 20:38:04 · 1690 阅读 · 0 评论 -
SVM的基本推导
1、SVM的作用对于给定的训练样本集D={(x1,y1), (x2,y2),… (xn,yn)},yi属于{-1,+1},希望能找出一个超平面,把不同类别的数据集分开,对于线性可分的数据集来说,这样的超平面有无穷多个,而最优的超平面即是分隔间距最大的中间那个超平面2、硬间隔最大化对于以上的KKT条件可以看出,对于任意的训练样本总有ai=0或者yif(xi) - 1=0即yi...原创 2019-03-14 00:02:45 · 2656 阅读 · 1 评论 -
TF-IDF词汇加权
1. TF-IDF定义:tf-idf, term frequency - inverse document frequency,词频 -逆向文档频率。用于评价一个单词在整个语料库中的重要程度, 即这个词是否对不同文档有着很好的区分能力.如果某个词语term在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为这个词语具有很好的文档分类能力。它通常用于词加权, 即作为权重因...原创 2019-03-22 16:49:48 · 771 阅读 · 0 评论 -
DTW的具体实现
DTW在很多领域都有其具体应用,主要用于模板匹配,如孤立词语音识别,计算机视觉中行为识别,信息检索等。最近在做语音这块的研究,于是深入分析了下DTW的具体实现过程,其实DTW的实现过程就是一个利用动态规划思想寻找最有路径。相关理论知识本来打算自己写一篇,网上查了下不得不佩服大神的杰作,所以这里自己就不再详述理论了,因为大神的佳作还是比较难超越。理论知识可以参考:(1)https://www.cnb...原创 2019-10-09 17:52:12 · 2587 阅读 · 5 评论
分享