声明:本博客为整料整理,引用的地方均有注明。如需转载,请注明出处!
低秩矩阵恢复算法
概述
近几年,低秩矩阵恢复(LRMR)广泛用于图像处理用途图像恢复,比如去噪、去模糊等。一幅清晰的自然图像其数据矩阵往往是低秩或者近似低秩的,但存在随机幅值任意大但是分布稀疏的误差破坏了原有数据的低秩性。低秩矩阵恢复是将退化图像看做一组低维数据加上噪声形成的,因此退化前的数据就可以通过低秩矩阵来逼近。
设B为模糊图像,根据低秩分解有B=I+N,其中I为清晰图像,是低秩的。N为噪声具有稀疏性。
秩[1]
设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。并规定零矩阵的秩等于0.
求解方法:对矩阵作初等行变换为行阶梯矩阵,其中非零行的个数为矩阵的秩。其物理意义矩阵中的最大不相关的向量的个数。
低秩矩阵(低秩)
低秩是指矩阵的秩比较小,而矩阵的低秩性是指矩阵的秩相对矩阵的行数或列数而言很小[2]。
由矩阵秩的定义知道,若将图像看成一个矩阵,那么它的基的数量越少,基对应的线性无关向量数量就越少,矩阵的秩就越小。当它远远小于矩阵的大小的时候,图像就是低秩的。低秩矩阵的每行或者每列都可以用其他的行或者列线性表示,这说明这个矩阵包含了大量的冗余信息。利用这种冗余信息可以对确实图像信息进行恢复,可以将多出来的噪声信息进行去除,还可以对错误的图像信息进行恢复[3]。
图像处理中,rank可以理解为图像所包含的信息的丰富程度,在现实生活中,一张图片大部分是相似的。比如一张大草原的图片
可以理解为,草原是由很多草组成的,而草是相似的,所以如果全是草,那么这张图所包含的信息量是很少的的,因为可以理解为草是草的复制品。而上图的蒙古包,人,马之类的则可以理解为图片所包含的信息,实际上,相对于只有草的草原图片和有草和蒙古包的草原图片,后者的秩是较高的。也就是说,图片中比较突兀的成分,比如蒙古包,比如人像照片中的红眼亮点,会增加图像矩阵的秩。而现实生活中一张不错的图片的秩其实是比较低的,如果图像的秩比较高,往往是因为图像中的噪声比较严重。比如拍照的时候ISO感光度设置过高造成噪点太过泛滥之类的。所以,图像处理的低秩性其实可以拿来去除照片中的噪点,电影中的雨丝也可以通过低秩表达的方式来去除。
Note:低秩与稀疏。低秩是指矩阵的秩较小,稀疏是指矩阵中非零元素的个数少。如果对矩阵进行奇异值分解,并把其所有奇异值排列为一个向量,那么这个向量的稀疏性便对应于该矩阵的低秩性
我们可以利用图像的低秩性来恢复图像,首先构建融合了低秩矩阵先验的模型,再求解这个模型得到低秩的矩阵。这种基于低秩矩阵逼近(LOW-Rank Matrix Approximation,LRMA)的模型称为低秩矩阵恢复模型(LRMR)。目前,LRMR主要有鲁棒主成分分析robust PCA,RPCA)、矩阵补全(matrix completion,MC)和低秩表示(low-rank representation,LRP)等三类模式。
LRMR
假设给定数据矩阵D,D=A+E,其中A和E未知,但是A时低秩的。分别采用三种模式来求解A
鲁棒主成分分析(RPCA)
(1)经典PCA
经典的PCA来获得最优的矩阵A优化问题如下[6]:
(1)
其中,
是子空间的期望维度,
是Frobenius范数,使用PCA的前提是假设数据E元素服从独立同分布的高斯同分布。只需对矩阵D进行SVD取前r项便可得到上述优化问题的最优解。
补充知识:F范数、奇异值分解(<




最低0.47元/天 解锁文章
_米米米米粒口红_新浪博客&spm=1001.2101.3001.5002&articleId=109658887&d=1&t=3&u=5f590db73bf04895928b15caf105a570)
7860

被折叠的 条评论
为什么被折叠?



