【机器学习算法篇】卷积神经网络中反向传播算法深入理解

背景CNN的参数调优是通过BP算法实现的,BP算法详解如下。概览使用有2个输入单元的神经网络,2个隐层神经元以及2个输出神经元。此外,隐层和输出神经元会包含一个偏置,下面是基本的网络结构:为了便于后面说明的说明,我们对该网络设置一些初始的权重、偏置以及输入和输出:反向传播的目标是对权重进行优化,使...

2018-06-06 17:08:07

阅读数:63

评论数:0

【Tensorflow】常用函数解析

1、tf.placeholde函数解释与用法:函数原型:tf.placeholder(dtype, shape=None, name=None)使用说明:placeholder,中文意思是占位符,在tensorflow中类似于函数参数,运行时必须传入值。该函数用于得到传递进来的真实的训练样本。同时...

2018-05-19 14:15:33

阅读数:51

评论数:0

CNN入门二:通俗理解卷积神经网络

一、CNN的引入在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×2828×28 的手写数字图片,输入层的神经元就有784个,如下图所示:  若在中间只使用一层...

2018-05-18 17:55:12

阅读数:39

评论数:1

CNN入门:通俗理解卷积神经网络

 通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1 前言    2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。    本博客内写过一...

2018-05-16 22:10:30

阅读数:70

评论数:0

机器学习常见算法之KNN

KNN(K-Nearest Neighbor)介绍Wikipedia上的 KNN词条 中有一个比较经典的图如下:KNN的算法过程是是这样的:从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。如果K=3,那...

2018-04-26 13:43:46

阅读数:16

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭