LeetCode 152: Maximum Product Subarray

Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

解题思路

动态规划:

  • 用 positive_max[i] 表示以第 i 个数结尾的子数组乘积中正数的最大值
  • 用 negative_min[i] 表示以第 i 个数结尾的子数组乘积中负数的最小值

则状态转移方程为:

if A[x] > 0:
  positive_max[x] = max(positive_max[x - 1] * A[x], A[x])
  negative_min[x] = negative_min[x - 1] * A[x]
elif A[x] < 0:
  positive_max[x] = negative_min[x - 1] * A[x]
  negative_min[x] = min(positive_max[x - 1] * A[x], A[x])

代码如下:

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        if (nums.size() == 0) return 0;

        int n = nums.size();
        int positive_max[n];
        int negative_min[n];

        if (nums[0] > 0) {
            positive_max[0] = nums[0];
            negative_min[0] = 0;
        }
        else {
            positive_max[0] = 0;
            negative_min[0] = nums[0];
        }

        int ans = nums[0];
        for (int i = 1; i < n; ++i) {
            if (nums[i] > 0) {
                positive_max[i] = max(positive_max[i-1] * nums[i], nums[i]);
                negative_min[i] = negative_min[i-1] * nums[i];
            }
            else {
                positive_max[i] = negative_min[i-1] * nums[i];
                negative_min[i] = min(positive_max[i-1] * nums[i], nums[i]);
            }

            if (positive_max[i] > ans) {
                ans = positive_max[i];
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值