- 博客(17)
- 问答 (1)
- 收藏
- 关注
原创 GCN实现节点分类任务
数据处理,数据集采用cora数据集 import dgl from dgl.data import DGLDataset import torch import os import pandas as pd import torch import numpy as np import matplotlib.pyplot as plt import networkx as nx import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch
2022-05-26 21:30:39
980
原创 3070/3080/3090显卡 + win10 下的tensorflow2-gpu配置
准备工作: 确定gpu与显卡的对应关系 1、安装CUDA11.1 链接:https://pan.baidu.com/s/1yKfgpLyFeGHpGRFPbCKMRw 提取码:1234 安装过程保持默认 2、下载cudnn包 (执行以下步骤,无需配置环境变量) 链接:https://pan.baidu.com/s/1T1aUvxvRajgxuEGGwCMm4w 提取码:1234 将cudnn下的cuda中的文件夹bin下的cudnn64_8.dll复制到cuda安装目录下对应的...
2021-04-25 12:34:42
729
原创 yum-y install lrssz 报错解决
进去cd /etc/yum.repos.d 删掉除CentOS-Base.repo的所有文件 vim CentOS-Base.repo 将所有的mirrorlist前面夹加上#,baseurl前的#去掉 并将mirror.centos.org替换为vault.centos.org 执行yum clean all && yum makecache ...
2021-02-10 14:59:19
404
原创 python的reverse操作
reverse注意事项 lt = [1,2,3] l2 = lt.reverse() print(l2) ##输出为None lt = [1,2,3] lt.reverse() print(lt) #输出为逆序 lt = [1,2,3] lt1 = lt lt1.reverse() print(lt, lt1) ##返回的结果会修改原list的值 # [3, 2, 1] [3, 2, 1] lt = [1,2,3] lt1 = lt.copy() lt1.reverse() pr.
2020-07-06 22:18:41
464
原创 win10+anaconda+dlib的安装
下载对应的版本: https://pypi.org/simple/dlib/ 将其放在指定的位置 pip install 位置+对应的版本的dll 比如:我下载的版本为dlib-19.8.1-cp36-cp36m-win_amd64.whl,放在了tensorflow的环境下 pip installE:\Anaconda\envs\tensorflow\dlib-19.8.1-cp36...
2019-05-30 14:04:08
946
3
翻译 tf.squeeze函数
import numpy as np import tensorflow as tf ''' 移除张量形状中大小为1的维度 ''' x = np.array([[[[2], [1]]]]) print(x.shape) #(1, 1, 2, 1) x0 = tf.squeeze(x, axis =0) print(x0.shape) #(1, 2, 1) x1 = tf.squeez...
2019-05-20 14:02:34
810
翻译 tf的split函数
import numpy as np import tensorflow as tf x = np.arange(0,50) x = x.reshape((5, 10)) print(x.shape) #(5, 10) split1, split2, split3 = tf.split(x, num_or_size_splits=[2, 3, 5], ...
2019-05-20 13:48:56
274
原创 车牌识别
在此先感谢以下博主提供的数据集和一些思路 https://blog.csdn.net/yang1159/article/details/88303461 https://blog.csdn.net/shadown1ght/article/details/78571187#comments 由于博主的代码风格和模型框架不太符合我的个人习惯,因此,自行搭建了网络结构,重新训练得到了参数,当然...
2019-05-16 20:42:49
485
4
原创 关于enumerate函数的注意点
classes = {'car', 'dinosaur', 'elephant', 'flower', 'horse'} list1 = ['car', 'dinosaur', 'elephant', 'flower', 'horse'] for index, name in enumerate(list1): print(index, name) for index, name in...
2019-05-16 09:03:44
708
原创 使用tf-record制作自己的数据集用于训练
1 准备数据集,准备了5个类别的数据,写了一个小程序,写入到 对应文件夹下: import os import shutil path = r"C:\Users\HUANG\Desktop\DATA\train" test_path = r"C:\Users\HUANG\Desktop\DATA\test" car = r"C:\Users\HUANG\Desktop\DATA\car" di...
2019-05-10 20:51:19
3705
14
原创 win0下caffe训练时出现Check failed: status == CUDNN_STATUS_SUCCESS (1 vs. 0) CUDNN_STATUS_NOT_INITIALIZE的处理
https://ask.csdn.net/questions/758743#answer_815731 以上是训练基于caffe训练时出现的错误,win10下基本没有人给出过比较好的解答,链接中为笔者的提问,自己解决后给出了相应的解决方法,不太详细,现将具体的解决方式记录如下: 建议先去NVIDA官网查看自己的CUDA的计算能力,如果compute capacity <3.0...
2019-04-30 17:43:58
3173
9
翻译 决策树的一般思路分析(机器学习实战)
'''决策树:在构造决策树时最重要的是确定划分数据时,哪个特征起决定性作用为了确定起决定性作用的特征,必须先计算信息的增益,获得信息增益最高的特征就是最好的选择集合信息的度量方式称为熵————信息的期望信息的定义:若待分类事物存在多个划分,则符号xi的信息定义为l(xi)=log2 (p(xi)), 其中p(xi)是选择该类的概率熵是信息的期望:H= -∑ p(xi)*log2 (p(xi)),从...
2018-05-26 15:24:10
742
原创 拓扑排序及AOE网的关键路径(python实现)
'''图的拓扑排序及关键路径'''import syssys.path.append(r"C:\Users\Administrator\Desktop\数据结构(python)代码")import Graph'''导入一个模块 Grpah是之前已经定义过得图类,其实完全没用到,最初的想法是基于图类来实现拓扑排序和求解关键路径的,但由于实现中基本上只有到了图类中定义的vertex_num函数输出了顶...
2018-05-26 13:39:01
3523
1
翻译 KNN算法及约会网站的配对效果(机器学习实战第一章)
''''k-近邻算法1计算训练集中数据与当前点之间的距离2按距离依次递增排序3选取与当前距离最近的k个点4确定这k个点所在类别的出现频率5返回前k个点出现频率最高的类别作为当前点有预测分类'''from numpy import *import operatordef classify(inX, data_set, labels, k): data_set_size=len(data_set...
2018-05-23 19:43:26
603
原创 图的广度优先遍历和深度优先遍历
其实最初的想法是定义一个图类再基于此来实现两种遍历 ,但其实一个import就可以搞定的事,为了练习决定还是打了一遍,后来发现这种做法真的很二,因为定义一个图类也仅仅只用到了顶点数的传值,以及得到一个顶点出发的出边而已 ,但是后来觉得完全是自己给自己找麻烦,顶点数直接一个len就ok了,出边通过一个for循环也ok了 ,单纯就图的遍历来讲没必要 ,因为定义图类后各种出错 ,各种累,各种想不到的鬼都...
2018-05-22 19:26:51
810
原创 Kruskal算法(python实现)
class Graph: def __init__(self,maps,unconn=0): vnum=len(maps) for x in maps: if len(x)!=vnum: raise ValueError self._maps=...
2018-05-19 20:28:38
3419
空空如也
CUDNN_STATUS_SUCCESS (1 vs. 0) 如何处理呢?
2019-04-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人