题目描述:
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5] 输出:9
提示:
n == height.length
0 <= n <= 3 * 104
0 <= height[i] <= 105
思路:
黑色的看成墙,蓝色的看成水,宽度一样,给定一个数组,每个数代表从左到右墙的高度,求出能装多少单位的水。也就是图中蓝色正方形的个数。
解法一:按行求
就是先求高度为 1 的水,再求高度为 2 的水,再求高度为 3 的水。
整个思路就是,求第 i 层的水,遍历每个位置,如果当前的高度小于 i,并且两边有高度大于等于 i 的,说明这个地方一定有水,水就可以加 1。
如果求高度为 i 的水,首先用一个变量 temp 保存当前累积的水,初始化为 0。从左到右遍历墙的高度,遇到高度大于等于 i 的时候,开始更新 temp。更新原则是遇到高度小于 i 的就把 temp 加 1,遇到高度大于等于 i 的,就把 temp 加到最终的答案 ans 里,并且 temp 置零,然后继续循环。
我们就以题目的例子讲一下。
先求第 1 行的水。
也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ] 。
原则是高度小于 1,temp ++,高度大于等于 1,ans = ans + temp,temp = 0。
temp 初始化为 0,ans = 0
height[0] 等于 0 < 1,不更新。
height[1] 等于 1 >= 1,开始更新 temp。
height[2] 等于 0 < 1,temp = temp + 1 = 1。
height[3] 等于 2 >= 1,ans = ans + temp = 1,temp = 0。
height[4] 等于 1 >= 1,ans = ans + temp = 1,temp = 0。
height[5] 等于 0 < 1,temp = temp + 1 = 1。
height[6] 等于 1 >= 1,ans = ans + temp = 2,temp = 0。
剩下的 height[7] 到最后,高度都大于等于 1,更新 ans = ans + temp = 2,temp = 0。而其实 temp 一直都是 0,所以 ans 没有变化。
再求第 2 行的水。
也就是红色区域中的水,数组是 height = [ 0, 1, 0, 2, 1, 0, 1, 3, 2, 1, 2, 1 ]。
原则是高度小于 2,temp ++,高度大于等于 2,ans = ans + temp,temp = 0。
temp 初始化为 0,ans 此时等于 2。
height[0] 等于 0 < 2,不更新。
height[1] 等于 1 < 2,不更新。
height[2] 等于 0 < 2,不更新。
height[3] 等于 2 >= 2,开始更新
height[4] 等于 1 < 2,temp = temp + 1 = 1。
height[5] 等于 0 < 2,temp = temp + 1 = 2。
height[6] 等于 1 < 2,temp = temp + 1 = 3。
height[7] 等于 3 >= 2,ans = ans + temp = 5,temp = 0。
height[8] 等于 2 >= 2,ans = ans + temp = 3,temp = 0。
height[9] 等于 1 < 2,temp = temp + 1 = 1。
height[10] 等于 2 >= 2,ans = ans + temp = 6,temp = 0。
height[11] 等于 1 < 2,temp = temp + 1 = 1。
然后结束循环,此时的 ans 就是6。
再看第 3 层。
按照之前的算法,之前的都是小于 3 的,不更新 temp,然后到 height[7] 等于 3,开始更新 temp,但是后边没有 height 大于等于 3 了,所以 ans 没有更新。
所以最终的 ans 就是 6。
代码如下,先说好,这种方法AC不过!!!只是一种思路,如果给出的柱子高度都很大就gg!!!
public int trap(int[] height) {
int sum = 0;
int max = getMaxHigh(height);//找到最大的高度,以便遍历
for (int i = 1; i <= max; i++) {
int temp = 0;
boolean isStart = false; //标记是否已经开始更新 temp
for (int j = 0; j < height.length; j++) {
if (isStart && height[j] < i) {
temp++;
}
if (height[j] >= i) {
sum = sum + temp;
temp = 0;
isStart = true;
}
}
}
return sum;
}
private int getMaxHigh(int[] height) {
int max = 0;
for (int i = 0; i < height.length; i++) {
max = max > height[i] ? max : height[i];
}
return max;
}
时间复杂度:如果最大的数是 mm,个数是 nn,那么就是 O(m∗n)。
空间复杂度:O(1)。
解法二:按列求
求每一列的水,我们只需要关注当前列,以及左边最高的墙,右边最高的墙就够了。
装水的多少,当然根据木桶效应,我们只需要看左边最高的墙和右边最高的墙中较矮的一个就够了。
所以,根据较矮的那个墙和当前列的墙的高度可以分为三种情况。
- 较矮的墙的高度大于当前列的墙的高度
把正在求的列左边最高的墙和右边最高的墙确定后,然后为了方便理解,我们把无关的墙去掉。
这样就很清楚了,现在想象一下,往两边最高的墙之间注水。正在求的列会有多少水?
很明显,较矮的一边,也就是左边的墙的高度,减去当前列的高度就可以了,也就是 2 - 1 = 1,可以存一个单位的水。
- 较矮的墙的高度小于当前列的墙的高度
同样的,我们把其他无关的列去掉。
想象下,往两边最高的墙之间注水。正在求的列会有多少水?
正在求的列不会有水,因为它大于了两边较矮的墙。
较矮的墙的高度等于当前列的墙的高度。
和上一种情况是一样的,不会有水。
明白了这三种情况,程序就很好写了,遍历每一列,然后分别求出这一列两边最高的墙。找出较矮的一端,和当前列的高度比较,结果就是上边的三种情况。
public int trap(int[] height) {
int sum = 0;
//左右两边的墙肯定不能装水,所以从1开始到length-1结束
for (int i = 1; i < height.length - 1; i++) {
int tmp = height[i];
int left_max = 0;
int right_max = 0;
//找当前列左边最高的墙
for (int j = i - 1; j >= 0; j--) {
left_max = left_max > height[j] ? left_max : height[j];
}
//找当前列最右边的墙
for (int k = i + 1; k < height.length; k++) {
right_max = right_max > height[k] ? right_max : height[k];
}
//选取但前列左边最高的墙和右边最高的墙中,最矮的墙
int min = Math.min(left_max, right_max);
//只有最矮的墙大于当前列的时候,当前列才有水,= min - tmp
if (min > tmp) {
sum = sum + (min - tmp);
}
}
return sum;
}
时间复杂度:O(n²),遍历每一列需要 n,找出左边最高和右边最高的墙加起来刚好又是一个 n,所以是 n²。
空间复杂度:O(1)。
执行结果如下:
解法三: 动态规划
我们注意到,解法二中。对于每一列,我们求它左边最高的墙和右边最高的墙,都是重新遍历一遍所有高度,这里我们可以优化一下。
首先用两个数组,max_left [i] 代表第 i 列左边最高的墙的高度,max_right[i] 代表第 i 列右边最高的墙的高度。(一定要注意下,第 i 列左(右)边最高的墙,是不包括自身的)
对于 max_left我们其实可以这样求。
max_left [i] = Max(max_left [i-1],height[i-1])。它前边的墙的左边的最高高度和它前边的墙的高度选一个较大的,就是当前列左边最高的墙了。
对于 max_right我们可以这样求。
max_right[i] = Max(max_right[i+1],height[i+1]) 。它后边的墙的右边的最高高度和它后边的墙的高度选一个较大的,就是当前列右边最高的墙了。
这样,我们再利用解法二的算法,就不用在 for 循环里每次重新遍历一次求 max_left 和 max_right 了。
代码如下:
public int trap(int[] height) {
int sum = 0;
int[] left_max = new int[height.length];
int[] right_max = new int[height.length];
//找第i列左边最大的,从第1列开始找
for (int i = 1; i < height.length - 1; i++) {
left_max[i] = Math.max(left_max[i - 1], height[i - 1]);
}
for (int j = height.length - 2; j > 0; j--) {
right_max[j] = Math.max(right_max[j + 1], height[j + 1]);
}
for (int k = 1; k < height.length - 1; k++) {
int min = Math.min(left_max[k], right_max[k]);
if (min > height[k]) {
sum = sum + (min - height[k]);
}
}
return sum;
}
时间复杂度:O(n)。
空间复杂度:O(n),用来保存每一列左边最高的墙和右边最高的墙。
解法四:双指针