[bzoj2301]problem b 莫比乌斯反演

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 4854  Solved: 2257
[Submit][Status][Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

Source

[Submit][Status][Discuss]


HOME Back

 

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N = 50000 + 5;
int T,a,b,c,d,k,tot;
int mul[N],sum[N],pri[N];
bool isnot[N];
void init(){
	mul[1] = 1;
	for( int i = 2; i <= N-5; i++ ){
		if( !isnot[i] ){
			mul[i] = -1;
			pri[++tot] = i;
		}
		for( int j = 1; j <= tot && i*pri[j] <= N-5; j++ ){
			isnot[i*pri[j]] = true;
			if( i % pri[j] == 0 ){ mul[i*pri[j]] = 0; break; }
			else mul[i*pri[j]] = -mul[i];
		}
	}
	for( int i = 1; i <= N-5; i++ )
		sum[i] = sum[i-1] + mul[i];
}
int cal( int n, int m ){
	if( n > m ) swap(n,m);
	int res = 0, p;
	for( int i = 1; i <= n; i = p+1 ){
		p = min(n/(n/i),m/(m/i));
		res += (sum[p]-sum[i-1])*(n/i)*(m/i);
	}
	return res;
}
int main(){
	init();
	scanf("%d", &T);
	while( T-- ){
		scanf("%d%d%d%d%d", &a, &b, &c, &d, &k); a--; c--;
		a /= k; b /= k; c /= k; d /= k;
		int ans = cal(a,c) + cal(b,d) - cal(a,d) - cal(b,c);
		printf("%d\n", ans);
	}
	return 0;
}


 

 

发布了313 篇原创文章 · 获赞 11 · 访问量 9万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览