[bzoj3594][Scoi2014]方伯伯的玉米田 树状数组优化dp

探讨如何通过调整玉米高度并移除部分玉米,形成最长的单调不下降序列。使用二维树状数组优化求解过程。

3594: [Scoi2014]方伯伯的玉米田

Time Limit: 60 Sec  Memory Limit: 128 MB
Submit: 1380  Solved: 618
[ Submit][ Status][ Discuss]

Description

方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。

Input


第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。

Output


输出1个整数,最多剩下的玉米数。

Sample Input

3 1
2 1 3

Sample Output

3

HINT

1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000

Source

By 佚名提供

二维的树状数组

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n,k,maxn,ans,a[10005],c[10005][605];
void update( int x, int y, int v ){
	for( int i = x; i <= maxn+k; i += i&(-i) )
		for( int j = y; j <= k+1; j += j&(-j) )
			c[i][j] = max(c[i][j],v);
}
int find( int x, int y ){
	int re = 0;
	for( int i = x; i; i -= i&(-i) )
		for( int j = y; j; j -= j&(-j) )
			re = max(re,c[i][j]);
	return re;
}
int main(){
	scanf("%d%d", &n, &k);
	for( int i = 1; i <= n; i++ ) scanf("%d", &a[i]), maxn = max(a[i],maxn);
	for( int i = 1; i <= n; i++ )
		for( int j = k; j >= 0; j-- ){
			int as = find(a[i]+j,j+1) + 1;
			ans = max(ans,as);
			update(a[i]+j,j+1,as);
		}
	printf("%d", ans);
	return 0;
}


 

[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值