质数
定义
一个正整数无法被除了 1 和它自身外的任何自然数整除
质数分布定理
对于一个足够大的正数 N,不超过 N 的质数大约有个
质数判定
判定一个正整数 N 是否是质数
试除法
• 若一个正整数 N是合数,则存在一个能整除 N 的数 K,其中
• 因此,只需要扫描 2~之间的所有整数,依次检查它们是否能整除 N ,若都 不能整除,则 N 是质数,否则,N 是合数。
• 时间复杂度为 O(
)
质数的筛选
求出1~ N 的所有质数,称为质数的筛选问题
方法一:朴素法
• 用试除法判断每一个正整数是否为质数
方法二 :Eratosthenes筛法
• 基本思想:质数的倍数一定不是质数
• 从 2 开始,由小到大扫描每一个数 x ,将它的倍数 2x、3x、4x..... 标记为合数
• 当扫描到一个数时,它没有被标记,则它不能被 2~x-1 之间的任何数整除,该数就是 质数
• 对于x,可以直接从 x倍开始标记
方法三 :线性筛法
• Eratosthenes筛法即使优化后,仍然会重复标记合数
• 线性筛法通过“从大到小累计质因子”的方式标记每个合数

本文介绍了数论的基础概念,包括质数的定义、分布定理和判定方法,如试除法和不同类型的质数筛选法。接着探讨了约数的定义,以及如何求一个数的正约数集合。最后讨论了互质、欧拉函数以及模运算与同余的关系,指出同余不支持除法,但可以通过乘法逆元来解决除法问题。
最低0.47元/天 解锁文章
453

被折叠的 条评论
为什么被折叠?



