浅谈数论:质数,约数与同余

本文介绍了数论的基础概念,包括质数的定义、分布定理和判定方法,如试除法和不同类型的质数筛选法。接着探讨了约数的定义,以及如何求一个数的正约数集合。最后讨论了互质、欧拉函数以及模运算与同余的关系,指出同余不支持除法,但可以通过乘法逆元来解决除法问题。
摘要由CSDN通过智能技术生成

质数

定义

一个正整数无法被除了 1 和它自身外的任何自然数整除

质数分布定理

对于一个足够大的正数 N,不超过 N 的质数大约有\frac{N}{lnN}

质数判定

判定一个正整数 N 是否是质数

试除法

• 若一个正整数 N是合数,则存在一个能整除 N 的数 K,其中2\leq K\leq \sqrt{N}

• 因此,只需要扫描 2~\sqrt{N}之间的所有整数,依次检查它们是否能整除 N ,若都 不能整除,则 N 是质数,否则,N 是合数。

• 时间复杂度为 O(\sqrt{N} )

质数的筛选

求出1~ N 的所有质数,称为质数的筛选问题

方法一:朴素法

• 用试除法判断每一个正整数是否为质数

方法二 :Eratosthenes筛法

• 基本思想:质数的倍数一定不是质数

• 从 2 开始,由小到大扫描每一个数 x ,将它的倍数 2x、3x、4x..... 标记为合数

• 当扫描到一个数时,它没有被标记,则它不能被 2~x-1 之间的任何数整除,该数就是 质数

• 对于x,可以直接从 x倍开始标记

方法三 :线性筛法

• Eratosthenes筛法即使优化后,仍然会重复标记合数

• 线性筛法通过“从大到小累计质因子”的方式标记每个合数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值