YOLOV8学习笔记2

本文详细分析了YOLOV8模型的训练结果,包括权重文件、混淆矩阵、F1曲线、标签图等关键指标。发现模型在绝缘子缺陷检测方面存在误判,需要优化模型以提高精度。
摘要由CSDN通过智能技术生成

YOLOV8训练结果分析

参考:https://blog.csdn.net/XiaoGShou/article/details/118274900
参考:https://blog.csdn.net/qq_44878985/article/details/129766487
大佬们写的很好,大家可以看大佬的,我就对照着大佬解释下自己的结果。
自己的绝缘子数据集,暂时跑了100轮。训练结果都会出现在runs文件夹下,点开detect文件夹,下面都是训练的结果,点开刚刚训练的train5文件夹。
在这里插入图片描述

1、weights(权重)

出现了两个.pt文件,best.py(主要是detect用到的),last.py最后一次训练模型。

2、confusion_matrix.png(混淆矩阵)

大佬解释的很清楚,在这直接截图过来了,因为本人的图,解释不明白。

1:混淆矩阵:<

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值