自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 风格转换简介

风格转换,是把一张图片转化成同内容但包含某风格的新图片。本文将介绍如何让机器学习风格转换,包含两种方法:优化问题求解、转化网络求解。

2017-05-26 00:03:21 1365

原创 神经网络优化算法综述

神经网络的训练有不同算法,本文将简要介绍常见的训练算法:adagrad、momentum、nag、rmsprop。同时简要介绍如何进行算法检查。

2017-05-23 00:15:10 6657

原创 GAN的统一架构与WGAN

GAN是让机器自动生成$P_G$去接近$P_{data}$。算法的关键是衡量分布$P_G,P_{data}$的差异,不同的衡量办法得到的$V(G,D)$不同,但是所有的衡量方法都可以归纳到一个统一的框架中:利用`f-divergence`衡量两个分布差异,利用`Fenchel Conjugate`将两个分布差异的问题转化到GAN的大框架中。 而近段异常流行的WGAN,便是将两个分布的差异用`Earch Mover

2017-05-22 20:56:03 5238

原创 生成对抗网络GAN

GAN属于生成模型,使用生成数据分布$P_{G}$去无限逼近数据的真实分布$P_{data}$。衡量两个数据分布的差异有多种度量,例如KL散度等,但是前提是得知道$P_{G}$。GAN利用discriminator巧妙地衡量了$P_{G},P_{data}$的差异性,利用discriminator和generator的不断竞争(minmax)得到了好的generator去生成数据分布$P_{G}$。

2017-05-18 17:25:08 1615

原创 记忆网络RNN、LSTM与GRU

一般的神经网络输入和输出的维度大小都是固定的,针对序列类型(尤其是变长的序列)的输入或输出数据束手无策。RNN通过采用具有记忆的隐含层单元解决了序列数据的训练问题。LSTM、GRU属于RNN的改进,解决了RNN中梯度消失爆炸的问题,属于序列数据训练的常用方案。

2017-05-09 20:40:50 1937

提示
确定要删除当前文章?
取消 删除