最长递增子序列 O(NlogN)算法

转载 2013年12月05日 10:10:23

http://www.felix021.com/blog/read.php?1587


今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

代码如下:


int LIS(int d[], int n){
    int *B = new int[n];
    int left, right, mid, len = 1;
    B[0] = d[1]; //为了和上面的一致,我们从1开始计数吧:)
    for(i = 2; i <= n; ++i){
        left = 0, right = len;
        while(left <= right){
            mid = (left + right) / 2;
            if(B[mid] < d[i]) left = mid + 1; //二分查找d[i]的插入位置
            else right = mid - 1;
        }
        B[left] = d[i]; //插入
        if(left > len) len++; //d[i]比现有的所有数字都大,所以left 才会大于 len。
    }
    delete[] B;
    return len;
}

--


转载请注明出自 http://www.felix021.com/blog/read.php?1587 ,如是转载文则注明原出处,谢谢:)
RSS订阅地址: http://www.felix021.com/blog/feed.php 。

LeetCode 最长递增子序列的O(nlogn)详解

#include #include #include #include using namespace std; //求DP vector getLIS(vector &num){ vec...
  • taoyanqi8932
  • taoyanqi8932
  • 2016-08-11 16:23:20
  • 271

最长递增子序列LIS的O(nlogn)的求法

最长递增子序列(Longest Increasing Subsequence)是指n个数的序列的最长单调递增子序列。比如,A = [1,3,6,7,9,4,10,5,6]的LIS是1 3 6 7 9 ...
  • u012505432
  • u012505432
  • 2016-08-17 10:57:06
  • 829

最长递增子序列O(nlogn)和O(n2)

单调子序列包含有单调递增子序列和递减子序列,不失一般性,这里只讨论单调递增子序列。首先,从定义上明确我们的问题。给定序列a1, a2, …, an,如果存在满足下列条件的子序列 ai1i2i...
  • kylehit
  • kylehit
  • 2013-04-29 17:14:23
  • 1950

最长递增子序列O(NlogN)算法(leetcode 300. Longest Increasing Subsequence )

最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。 假设存在一个序列d[1....
  • jiary5201314
  • jiary5201314
  • 2016-04-16 21:06:45
  • 3049

最长递增子序列的O(NlogN)算法

假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。 下面一步一步试着找出它。 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列...
  • Katapeltes
  • Katapeltes
  • 2016-08-08 18:06:52
  • 177

最长递增子序列(LIS)的O(NlogN)打印算法

题目: 求一个一维数组arr[n]中的最长递增子序列的长度,如在序列1,5,8,3,6,7中,最长递增子序列长度为4 (即1,3,6,7)。 方法一:一般的DP方法(O(N^2)) 像LC...
  • synapse7
  • synapse7
  • 2013-09-17 09:39:02
  • 4628

找出n个数组成的最长单调递增子序列( 动态规划O(nlogn) )

题目:       给出一个由n个数组成的序列x[1..n],找出它的最长单调上升子序列。即求最大的m和a1,a2……,am,使得a1   分析:       这也是一道动态规划...
  • morninghapppy
  • morninghapppy
  • 2012-06-07 20:24:36
  • 4069

最长上升子序列nlogn及n^2算法

这题目是经典的DP题目,也可叫作LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和...
  • patkritLee
  • patkritLee
  • 2016-02-21 12:34:09
  • 1035

最长递增子序列 O nlgn时间复杂度

[编程题]最长递增子序列 对于一个数字序列,请设计一个复杂度为O(nlogn)的算法,返回该序列的最长上升子序列的长度,这里的子序列定义为这样一个序列U1,U2...,其中Ui ...
  • u012605629
  • u012605629
  • 2015-08-28 15:17:24
  • 935

动态规划---最长上升子序列问题(O(nlogn),O(n^2))

LIS(Longest Increasing Subsequence)最长上升子序列 或者 最长不下降子序列。很基础的题目,有两种算法,复杂度分别为O(n*logn)和O(n^2) 。 ****...
  • zhangyx_Xyz
  • zhangyx_Xyz
  • 2016-03-21 20:32:37
  • 6863
收藏助手
不良信息举报
您举报文章:最长递增子序列 O(NlogN)算法
举报原因:
原因补充:

(最多只允许输入30个字)