pandas中series用法(python)

本文详细介绍了Pandas库中的Series数据结构,包括其构成(数据值与标签索引)、创建方法(如使用ndarray、字典和指定索引),以及访问数据的方式和常用属性与方法,如head/tail函数和处理缺失值的功能。
摘要由CSDN通过智能技术生成

简介

Series结构,也称Series序列,是pandas常用的数据结构之一,它是一种类似于一维数组的结构,由一组数据值value和一组标签索引index组成,其中数据值和标签索引一一对应(有点像字典类型)

Series可以保存任何数据类型,比如整数,字符串,浮点数,python对象等,它的标签默认为0开始依次递增。

创建Series对象

import pandas as pd
s=pd.Series( data, index, dtype, copy)

参数说明:

参数名称

描述

data

输入的数据,可以是列表、常量、ndarray 数组等。

index

索引值必须是惟一的,如果没有传递索引,则默认为 np.arrange(n)。

dtype

dtype表示数据类型,如果没有提供,则会自动判断得出。

copy

表示对 data 进行拷贝,默认为 False

下面展示不同的创建Series的方法

ndarray创建Series对象


先做些准备工作,后面写代码就不写了

# 导入一些库和解决中文乱码的问题

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import matplotlib

matplotlib.rc("font",family="FangSong")

自动创建索引
# 创建Series,自动创建索引

data = np.arange(5)
print(data)
a = pd.Series(data)
print(a)

指定索引
# 指定索引

a=pd.Series(data=['a','b','c','d'],index=['First','Second','Third','Forth'])
print(a)

用字典类型数据创建

# 用字典类型数据创建Series类型,不指定index

dic={'tom':19,'amy':20,'dog':18,'marry':22}
print(dic)
a=pd.Series(dic)
print(a)


# 用字典类型数据创建Series类型,指定index

dic={'a':1,'b':3,'c':2}
a=pd.Series(dic,index=['a','c','b','d'])
print(a)

访问Series数据

我们有两种方式访问Series数据,位置索引和标签索引

# 访问Series数据

data=np.arange(1,6)
index=['a','b','c','d','e']
a=pd.Series(data,index=index)
print(a)
print("-"*50)

# 使用下标和标签索引访问某一个数据

print(a[1])
print(a['b'])
print("-"*50)

# 使用下标和标签索引访问多个数据
print(a[2:])
print(a[['a','c','d']])

位置索引访问操作方式和numpy基本上一模一样,而标签索引访问和字典的操作方式基本上一模一样

Series常用属性

名称

属性

axes

以列表形式返回行标签索引

dtype

返回数据类型

empty

返回Series是否为空,类型为bool

ndim

返回数据维度

size

返回数据元素的数量

values

ndarray形式返回Series对象

index

返回一个RangleIndex对象,描述索引值

代码

# 常用属性

data=np.arange(1,6)
index=['a','b','c','d','e']
a=pd.Series(data,index=index)
print(a)
print("-"*50)

# axex:以列表形式返回行标签索引
print(a.axes)
print("-"*50)

# dtype:返回数据类型
print(a.dtype)
print("-"*50)

# empty:返回Series是否为空,类型为bool
print(a.empty)
print("-"*50)

# ndim:返回数据维度
print(a.ndim)
print("-"*50)

# size:返回数据元素的数量
print(a.size)
print("-"*50)

# values:以ndarray形式返回Series对象
print(a.values)
print("-"*50)

# index:返回一个RangleIndex对象,描述索引值
print(a.index)
print("-"*50)

效果

Series常用方法

方法

描述

head

返回前n行数据,默认是前五行

tail

返回最后n行数据,默认是最后五行

isnull

检测Series中的缺失值,值缺失为true

notnull

检测Series中的缺失值,值缺失为false

代码

data=np.arange(1,6).astype(float)
data[4]=np.nan
index=['a','b','c','d','e']
a=pd.Series(data,index=index)
print(a)
print("-"*50)

print(a.head(3))
print(a.tail(3))
print("-"*50)

print(pd.isnull(a))
print("-"*50)
print(pd.notnull(a))

效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值