一阶低通滤波

直流、交流、脉冲信号都可以用它


软件上的一阶低通滤波

优点:

-采用数字滤波算法来实现动态的RC滤波,则能很好的克服模拟滤波器的缺点; 
-在模拟常数要求较大的场合这种算法显得更为实用; 
-其对于周期干扰有良好的抑制作用, 
-比较节省RAM空间

缺点

-不足之处是带来了相位滞后,导致灵敏度低; 
-同时它不能滤除频率高于采样频率的二分之一(称为奈奎斯特频率)的干扰(例如采样频率为100Hz,则它不能滤除50Hz以上的干扰信号)对于高于奈奎斯特频率的干扰信号,应该采用模拟滤波器。 
-对没有乘、除法运算指令的单片机来说,程序运算工作量较大

基本滤波算法:

算法由来: 
频率分析中一阶RC低通滤波在S域的传递函数: 

VoutVin=1RCs+1,(s=jω)VoutVin=1RCs+1,(s=jω)

通过z变换(方法很多,如一阶前向差分、双线性变换等这里用一阶后向差分法) 
s=1z(1)T,Ts=1−z∧(−1)T,T表示采样周期

带入S域传递函数中: 

Y(z)X(z)=1RC1z(1)T+1=TRC(1z(1))+TY(z)X(z)=1RC1−z∧(−1)T+1=TRC(1−z∧(−1))+T

推导转化为差分方程后可得: 
Y(n)=TT+RCX(n)+RCT+RCY(n1)Y(n)=TT+RCX(n)+RCT+RCY(n−1)

通过Z变换把S域的传递函数转化成时域的差分方程,分析可得到

一阶RC数字滤波的基本算法

X为输入,Y为滤波后得输出值,则: 

Y(n)=aX(n)+(1a)Y(n1)Y(n)=a∗X(n)+(1−a)∗Y(n−1)

a为与RC值有关的一个参数,称为滤波系数,其值决定新采样值在本次滤波结果中所占的权重,其值通常远小于1,当采样间隔t足够小的时候, 

a=tRCa=tRC

-滤波系数越小,滤波结果越平稳,但是灵敏度越低;
-滤波系数越大,灵敏度越高,但是滤波结果越不稳定

-本次输出值主要取决于上次滤波输出值,当前采样值对本次输出贡献比较小,起到修正作用;

-截止频率:

fl=a2πtfl=a2πt

例如:t=0.5s (f=2Hz), a=1/32 
则fl=(1/32)/(2*3.14*0.5)=0.01Hz;

基本程序:

按照一阶滤波的基本原理与公式写程序,如下:

/*程序中整数运算比小数运算快,为加快程序的处理速度,为计算方便,a取一整数,1-a用256-a来代替,a则取0~255,代表新采样值在滤波结果中的权重(也可将1-a的基数改为100-a,计算结果做相应处理,这里不做说明)*/

#define a 128 

char value; //上次滤波值
char filter()
{
    char new_value;
    new_value=get_ad();//本次采样值
    return(256-a)*value/256+a*new_value/256;
}

程序初步优化

减少乘、除的运算次数以提高运算速度。 
具体优化办法: 
先将新采样值与上次滤波结果进行比较,然后根据比较采用不同的公式计算,这样程序的运算效率提高了一倍; 
化解基本公式可得: 

Xn<Y(n1)Yn=Y(n1)(Y(n1)Xn)×a÷256;当Xn<Y(n−1)时,Yn=Y(n−1)−(Y(n−1)−Xn)×a÷256;

Xn>Y(n1)Yn=Y(n1)+(XnY(n1))×a÷256;当Xn>Y(n−1)时,Yn=Y(n−1)+(Xn−Y(n−1))×a÷256;

流程图: 
这里写图片描述

程序:

/*入口:NEW_DATA 新采样值
       OLD_DATA 上次滤波结果
       k        滤波系数(0~255)(代表在滤波结果中的权重)
  出口:         本次滤波结果
 */
 char filter_1(char NEW_DATA,char OLD_DATA,char k)
{
    int result;
    if(NEW_DATA<OLD_DATA)
    {
        result=OLD_DATA-NEW_DATA;
        result=result*k;
        result=result+128;//+128是为了四色五入
        result=result/256;
        result=OLD_DATA-result;
    }
    else if(NEW_DATA>OLD_DATA)
    {
        result=NEW_DATA-OLD_DATA;
        result=result*k;
        result=result+128;//+128是为了四色五入
        result=result/256;
        result=OLD_DATA-result;
    }
    else result=OLD_DATA;
    return((char)result);
}

滤波分析: 
当滤波系数为30的时候: 
这里写图片描述 
当滤波系数为128的时候: 
这里写图片描述 
当滤波系数为200的时候: 
这里写图片描述 
可见滤波系数越小,滤波结果越平稳,但是灵敏度越低;滤波系数越大,灵敏度越高,但滤波结果也越不稳定;

不足

-灵敏度和平稳度间的矛盾

-小数舍弃带来的误差 
比如:本次采样值=25,上次滤波结果=24,滤波系数=10; 
根据算法得本次结果=24.0390625 
在单片机中,很少采用浮点数,小数部分要么舍弃,要么进行四色五入。这样结果就变成24;假如采样值一直为25那么,结果永远是24;滤波结果和实际数据一直存在无法消除的误差。 
严重时会导致,在数据采样数据稳定在某一数值上时,滤波结果曲线偏离实际值(即滤波结果在稳定时与实际结果存在较大误差);

改善办法

改变滤波系数,增大会导致平稳度降低,滤波系数太大滤波也就丧失意义; 
将小数位参与计算,会给CPU带来沉重运算压力;

优化方法 —– 动态调整滤波系数

1、实现功能: 
-当数据快速变化时,滤波结果能及时跟进,并且数据的变化越快,灵敏度应该越高(灵敏度优先原则) 
-当数据趋于稳定,并在一个范围内振荡时,滤波结果能趋于平稳(平稳度优先原则) 
-当数据稳定后,滤波结果能逼近并最终等于采样数据(消除因计算中小数带来的误差) 
2、调整前判断: 
-数据变化方向是否为同一个方向(如当连续两次的采样值都比其上次滤波结果大时,视为变化方向一致,否则视为不一致) 
-数据变化是否较快(主要是判断采样值和上一次滤波结果之间的差值) 
3、调整原则: 
-当两次数据变化不一致时,说明有抖动,将滤波系数清零,忽略本次新采样值 
-当数据持续向一个方向变化时,逐渐提高滤波系数,提供本次采样值得权; 
-当数据变化较快(差值>消抖计数加速反应阈值)时,要加速提高滤波系数

调整滤波系数的程序流程:

这里写图片描述

几个常量参数及其取值范围: 
(不同的取值会影响滤波的灵敏度和稳定度) 
1、消抖计数加速反应阈值,取值根据数据情况确定 
2、消抖计数最大值,一般取值10; 
3、滤波系数增量,一般取值范围为10~30 
4、滤波系数最大值,一般取值255; 
这里写图片描述

在调用一阶滤波程序前,先调用调整滤波系数程序,对系数进行即时调整

滤波效果

1、当采样数据偶然受到干扰,滤波结果中的干扰完全被滤除 
2、当数据在一个范围内振荡时,滤波结果曲线非常平滑,几乎是一根直线 
3、当采样数据发生真实的变化时,滤波结果也能比较及时地跟进 
4、当采样数据趋于稳定时,滤波结果逐渐逼近并最终等于采样数据

-最终改进算法,兼顾了灵敏度和平稳度的要求;同时又不太消耗系统的RAM; 
-只要合理调整几个常量,以使得算法更合适实际应用;

应用

下面是一个使用了动态调整滤波的例子:

程序:

//用MPU6050测得数据;对x轴滤波处理

#define Threshold_1     8       //阈值1用于一阶带参滤波器,变化角度大于此值时,计数增加
#define Threshold_2     30      //阈值2用于一阶带参滤波器,计数值大于此值时,增大参数,增强滤波跟随

float K_x=0; //滤波系数
u8 new_flag_x=0;//本次数据变化方向
u8 num_x=0;//滤波计数器


/*****带系数修改的一阶滤波函数

入口: NEW_DATA    新采样的角度值
      OLD_DATA    上次滤波获得的角度结果
      k           滤波系数(代表在滤波结果中的权重)
      flag        上次数据变化方向
出口: result      本次滤波角度结果
 */
float filter_1_x(float NEW_DATA,float OLD_DATA,float k,u8 flag)
{


    //角度变化方向,new_flag=1表示角度增加,=0表示角度正在减小
    if((NEW_DATA-OLD_DATA)>0)
        new_flag_x=1;
    else if((NEW_DATA-OLD_DATA)<0)
        new_flag_x=0;


    if(new_flag_x==flag)  //此次变化与前一次变化方向是否一致,相等表示角度变化方向一致
        {
            num_x++;
            if(fabs((NEW_DATA-OLD_DATA))>Threshold_1)
        //当变化角度大于Threshold_1度的时候,进行计数器num快速增加,以达到快速增大K值,提高跟随性
                num_x+=5;                           

            if(num_x>Threshold_2)   //计数阈值设置,当角度递增或递减速度达到一定速率时,增大K值
            {
                K_x=k+0.2;          //0.2为K_x的增长值,看实际需要修改
                num_x=0;
            }
        }
    else 
        {
            num_x=0;
            K_x=0.01;     //角度变化稳定时K_x值,看实际修改
        }

    OLD_DATA=(1-K_x)*OLD_DATA+K_x*NEW_DATA;
    return OLD_DATA;
}

上几张图片: 
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

-

-

修改程序中的阈值1和阈值2,可获得不同的滤波效果

发布了11 篇原创文章 · 获赞 6 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览