洛谷 P2261 [CQOI2007]余数求和

题目描述

给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29

输入输出格式

输入格式:

两个整数n k

输出格式:

答案

输入输出样例

输入样例#1:

10 5

输出样例#1:

29

说明

30%: n,k <= 1000
60%: n,k <= 10^6
100% n,k <= 10^9

分析

假设我们要求G(p,k)(p>k),即k mod 1+ k mod 2 + k mod 3 + … +k mod p,我们可以把它分成k部分,分别是k mod ( k + 1 ) + k mod ( k + 2 ) + k mod ( k + 3 ) + … + k mod p和k mod ( k / 2 + 1 ) + k mod ( k / 2 + 2 ) + k mod ( k / 2 + 3 ) + … + k mod k和k mod ( k / 3 +1 ) + k mod ( k / 3 +2 ) + k mod ( k / 3 +3 ) + … + k mod ( k / 2 )和k mod ( k / 4 +1 ) +k mod ( k / 4 +2 ) + k mod ( k / 4 +3 ) + … + k mod ( k / 3 )和……和k mod k/k,分别记作第1部分,第2部分,第3部分……第k部分,可以证明,每一部分都是一个等差数列的和(请读者自己证明这一过程),则可用公式n·(a1+an)/2求得每个部分的值,相加即是答案。
但你会发现这种方法的时间复杂度为O(n),与直接求值的时间复杂度(O(n))相同。怎么办呢?我们可以先用直接求值的方法求出G(sqrt(p),k)的值和前sqrt(p)部分的和(sqrt(x)表示x的算术平方根用去尾法保留整数的值),可以证明,两者的和为G(p,k)(这个的证明应该很容易吧)。
那么问题来了,G(q,k)(q

代码

#include <bits/stdc++.h>

long long n,k;
long long ans=0;

int main ()
{
    std::cin>>n>>k;
    long long i;
    for (i = 2; (double)k / i >= floor(sqrt(k)) && n > k / i; i++)
        ans += (std::min(k / (i - 1), n) - k / i) * (k % std::min(n, k / (i - 1)) + k % (k / i + 1)) / 2;
    if (n > k)
        ans+=k*(n-k);
    for (long long j = 1;j <= floor(k / (i - 1)) && j <= n; j++)
        ans += k % j;
    std::cout<<ans<<std::endl;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值