BZOJ 2301: [HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2

2 5 1 5 1

1 5 1 5 2

Sample Output

14

3

HINT

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

分析

首先利用容斥原理将询问分解 问题转化为求有多少个数对(x,y)满足x<=m,y<=n,且GCD(x,y)=k
这里就可以利用到莫比乌斯反演:
这里写图片描述
我们令F(d)为GCD(x,y)=d且x<=m,y<=n的数对数
f(d)为d|GCD(x,y)且x<=m,y<=n的数对数
那么显然有F(d)=(n/d)*(m/d)
但是直接套用公式还是O(n^2)级别的
考虑到(n/d)*(m/d)最多只会有2√n个商 因此我们可以枚举这个商 对μ维护一个前缀和来计算

代码

#include <bits/stdc++.h>

#define N 100100
#define ll long long

using namespace std;

int tot;

ll mu[N],prime[N];
bool notPrime[N];

void getMu()
{
    mu[1] = 1;
    for (int i = 2; i <= N; i++)
    {
        if (!notPrime[i])
        {
            mu[i] = -1;
            prime[++tot] = i;
        }
        for (int j = 1; j <= tot && prime[j] * i <= N; j++)
        {
            notPrime[i * prime[j]] = true;
            if (i % prime[j] == 0)
            {
                mu[prime[j] * i] = 0;
                break;
            }
            mu[prime[j] * i] = -mu[i];
        }
    }

    for (int i = 2; i <= N; i++)
    {
        mu[i] += mu[i - 1];
    }
}

ll work(int m,int n,int k)
{
    ll result = 0;
    int last;
    n /= k;
    m /= k;
    for (int i = 1; i <= n && i <= m; i = last + 1)
    {
        last = min(n / (n / i),m / (m / i));
        result += (mu[last] - mu[i - 1]) * (m / i) * (n / i);
    }
    return result;
}

int main()
{
    int T;
    getMu();
    scanf("%d",&T);
    while (T--)
    {
        int a,b,c,d,k;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%lld\n",work(b,d,k) - work(a-1,d,k) - work(b,c-1,k) + work(a-1,c-1,k));
    }

    return 0;
}
发布了323 篇原创文章 · 获赞 11 · 访问量 7万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览