AtCoder Grand Contest 012 C - Tautonym Puzzle

题意

让你构造一个长度不超过200的字符串,使得其恰好有n个非空自序列可以表示成AA的形式,其中A表示一个字符串。
n<=10^12

分析

题意:定义good串为从中间切开两边一模一样的串,比如123123,11,acac,给出N,要求构造一个数列长度在200及以内,包含的数字只能1~100,其子序列为good的数量恰好为N。
思路:考虑构造一个数列,右半部分为升序例如1,2,3,4,5,左半部分也为1~5的某种排列,其上升子序列的数目决定了整个数列的good序列数,因此题目转化为构造出合适的左半部分的排列。

先找规律

上升子序列数:与上一排列的差值:排列

1:1:1

3:2:1 2

7:4:1 2 3

15:8:1 2 3 4

2^n-1:2^(n-1):1 2 3 … …n

于是就容易解决了,将N转换成二进制,比如13(1101),等于1000+0100+0001,先考虑1000(8),为上面中1,2,3的排列数+1,因此为方便处理先将N+1,14(1110)=1000+0100+0010,主线是先构造出形如1,2,3升序的序列,同时在构造过程插入一些数满足0100和0010,具体看代码。

CODE

#include <bits/stdc++.h>

int a[103], b[103];  

int main()  
{  
    int p1 = 0, p2 = 0, m = 100;  
    long long n;  
    scanf("%lld",&n);  
    ++n;  
    while (n > 1)  
    {  
        if (n & 1) 
            a[++p1] = m--, --n;  
        else b[++p2] = m--, n>>=1;  
    }  
    printf("%d\n", p1 + p2 << 1);  
    for (int i = 1; i <= p1; ++i)  
        printf("%d ",a[i]);  
    for (int i = p2; i >= 1; --i)  
        printf("%d ",b[i]);  
    for (int i = 101 - p1 - p2; i <= 100; ++i)  
        printf("%d ",i);  
    puts("");  
}  
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ypxrain/article/details/79966209
上一篇AtCoder Regular Contest 080 E - Young Maids
下一篇BZOJ 4559: [JLoi2016]成绩比较
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭