Codeforces 891E Lust

本文介绍了一种计算特定随机序列操作后结果期望值的方法,通过生成函数和组合数学技巧,有效地解决了大规模数据集上的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

现在给你一有n个整数的序列a[],有一个初始为0的值res,重复下面的过程k次:
“随机选择一个[1,n]之间的下标x,res加上所有满足i≠x的a[i]的乘积,然后将a[x]减去1”
问最后res的期望值,对10^9+7取模
n<=5000
k<=10^9

分析

这个其实就是要求

AA ∏ A − ∏ A ′
其中A表示初始状态的乘积,A’表示结束状态乘积的期望。
那么现在问题就是我们怎么求A’
我们设我们对 a[i] a [ i ] 操作了 b[i] b [ i ] 次,那么我们有
E=k!(a[i]b[i])nk(b[i])! E = k ! ∏ ( a [ i ] − b [ i ] ) n k ∏ ( b [ i ] ) !

我们考虑第i个的生成函数位
fi=j0aijj! f i = ∑ j ≥ 0 a i − j j !

于是总的生成函数就为
f(x)=j0aijj!xj f ( x ) = ∏ ∑ j ≥ 0 a i − j j ! x j

=aixjj!xxj1(j1)! = ∏ ∑ a i x j j ! − x ∗ x j − 1 ( j − 1 ) !

=enx(aix) = e n x ∏ ( a i − x )

后面的我们就可以n^2处理了

代码

#include <bits/stdc++.h>

const int N = 5000 + 10;
const int MOD = 998244353;

int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

int f[N][N];
int a[N];

int ksm(int x,int y)
{
    int res = 1;
    while (y)
    {
        if (y & 1)
            res = 1ll * x * res % MOD;
        x = 1ll * x * x % MOD;
        y >>= 1;
    }
    return res;
}

int main()
{
    freopen("manastorm.in","r",stdin);
    freopen("manastorm.out","w",stdout);
    int n = read(), k = read();
    for (int i = 1; i <= n; i++)
        a[i] = read();
    f[0][0] = 1;
    for (int i = 1; i <= n; i++)
    {
        f[i][0] = 1ll * f[i - 1][0] * a[i] % MOD;
        for (int j = 1; j <= i; j++) 
            f[i][j] = (1ll * f[i - 1][j] * a[i] - f[i - 1][j - 1]) % MOD;
    }
    int ans = 0;
    for (int i = 0; i <= std::min(n, k); i++)
    {
        int res = 1;
        for (int j = k - i + 1; j <= k; j++) 
            res = 1ll * res * j % MOD;
        ans = (ans + 1ll * f[n][i] * ksm(n, k - i) % MOD * res) % MOD;
    }
    ans = 1ll * ans * ksm(ksm(n, k), MOD - 2) % MOD;
    int m = 1;
    for (int i = 1; i <= n; i++)
        m = 1ll * m * a[i] % MOD;
    m = (m - ans + MOD) % MOD;
    printf("%d\n",m);
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值