落日之城

‘’如果有一天我们淹没在茫茫人海中庸碌一生,那一定是我们没有努力活得丰盛。”...

排序:
默认
按更新时间
按访问量

自适应滤波器的四种基本应用

1.系统辨识:当我们想描述一个未知系统(如一组复杂的模拟电路),解析的算出系统的冲击响应或者系统函数是比较困难的。这时,我们就可以用未知系统的输入和输出训练自适应滤波器(未知系统的输入作为自适应滤波器的输入,未知系统的输出作为自适应滤波器的期望信号,当自适应滤波器收敛后,对应的滤波器就可以看做是未...

2018-05-07 21:40:47

阅读数:54

评论数:0

自适应滤波器:最小均方误差(LMS)滤波器

自适应算法所采用的最优准则有最小均方误差(LMS)准则,最小二乘(LS)准则、最大信噪比准则和统计检测准则等,其中最小均方误差(LMS)准则和最小二乘(LS)准则是目前最为流行的自适应算法准则。x(n)代表n时刻的输入信号,y(n)代表n时刻的输出信号,d(n)代表n时刻的期望信号,通过期望信号与...

2018-05-07 15:32:14

阅读数:159

评论数:0

粒子滤波(Particle Filter)的通俗解释

其实,粒子叫作估计器estimator。估计过去叫平滑smoothing,估计未来叫预测prediction,估计当前值才叫滤波filtering。粒子滤波算法源于蒙特卡洛思想,即以某事件出现的频率来指代该事件的概率。通俗的讲,粒子滤波也是能用已知的一些数据预测未来的数据。我们知道,科尔曼滤波限制...

2017-03-15 11:06:13

阅读数:4625

评论数:1

卡尔曼滤波(Kalman Filter)的通俗解释

intuitive explain: 作者:Kent Zeng 链接:https://www.zhihu.com/question/23971601/answer/26254459 假设你有两个传感器,测的是同一个信号。可是它们每次的读数都不太一样,怎么办? 取平均。 再假设你知道其...

2017-02-22 16:03:07

阅读数:1202

评论数:0

压缩感知(compressed sensing)的通俗解释

在我看来,压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。即,...

2017-02-16 21:01:51

阅读数:12703

评论数:0

一幅图弄清DFT与DTFT,FFT的关系

很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系。 首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度...

2017-02-16 18:53:45

阅读数:1385

评论数:0

小波变换(wavelet transform)的通俗解释(一)

从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。 下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。 ...

2017-02-16 10:57:34

阅读数:13882

评论数:2

小波变换(wavelet transform)的通俗解释(二)

上篇文章已经说得很详细了,这边文章作为补充。 首先是一个宏观的例子: 相信大家都看过油画。 对于特别巨幅的油画, 不知道有没有过体会, 油画是只可远观而不可亵玩? 当你在足够远的距离观察油画时, 油画所表达的内容是有层次且内容丰富的, 但是当你靠近油画甚至贴在油画上看时, 你只能看...

2017-02-16 10:56:30

阅读数:5216

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭