证明:任何一个正整数均可以表示为两个互质整数的和

本文探讨了一个有趣的数学定理,即任何正整数均可表示为两个互质整数之和。通过分析奇数和偶数的不同情况,证明了这一结论的正确性。对于奇数2n+1,它可表示为n与n+1的和;对于偶数,无论其为奇数的两倍还是偶数的两倍,均可找到两个互质的奇数之和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到Coprime sampling里有一个定理,任何一个正整数均可以表示为两个互质整数的和,找了一下相关的证明。

对于奇数2n+1
2n+1=n+n+1 (n>2) 那么 n与(n+1) 互质

对于偶数,偶数可能是奇数(2m+1)也可能是偶数(2m)的2倍,分为两种情况:

  • 对于4m =2(2m)
    4m=(2m-1)+(2m+1) 两个相邻奇数一定互质
  • 对于4m+2=2(2m+1)
    4m+2=(2m-1)+(2m+3) 两个奇数相差一位(差4) 也一定互质

得证。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值