对于MNIST手写数字数据集的训练和测试来说,如果使用一般的全连接层网络的话其实是很奇怪的,主要原因是这样一个网络架构没有考虑到图像的空间结构。例如,它在完全相同的基础上去对待相距很远和彼此接近的输⼊像素。这样的话,我们秘法使用空间结构的架构。所以引入卷积神经网络,该网络特别适用于分类图像的特殊架构。目前,深度卷积网络或者一些近似的变化形式被用在大多数图像识别的神经网络中。
卷积神经网络采用了三种基本概:局部感受野(local receptive fields),共享权重(shared weights),和混合(pooling)。
局部感受野:在之前看到的全连接的网络中,输入描述成纵向排列的神经元。但在一个卷积神经网络中,我们把输入以一个输入看作是一个矩阵排列的神经元。如把MNIST数据看作是一个28×28的方形排列,其值对应输入的28×28的像素光强度:
input neurons <
卷积神经网络介绍
最新推荐文章于 2024-10-12 11:58:22 发布
卷积神经网络(CNN)利用局部感受野、共享权重和混合技术处理图像数据,尤其适合图像识别任务。通过多层特征映射,CNN能检测多种局部特征,减少参数数量,加速训练过程。混合层如最大值混合或L2混合用于信息浓缩,提高模型效率。
最低0.47元/天 解锁文章
504

被折叠的 条评论
为什么被折叠?



