51Nod 1279 扔盘子 二分

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/yr12Dong/article/details/79138272

这里写图片描述

这道题如果暴力走 O(n^2) 肯定超时 然后看数据5*10^4 时间1s 呃 O(nlogn)一下是能过的

然后 在想我为什么要O(n^2)走 肯定会有重复的啊 那怎么省略掉这些呢

很简单 如果我这个圆盘往下掉 第一层的宽度小于第二层的宽度 那么很明显 第二层的宽度是没有用处的 那么有用的是什么呢 是上一层的宽度

也就是说

        if(w>=Min) width[i]=Min;
        else {
            Min = w;
            width[i]=w;
        }

那么 我们就构造出来了一个有序序列
这样我们就能用O(logn)的时间解决这个圆盘到底落在哪了

#include<iostream>
using namespace std;
int width[50005];
int main(){
    int n,m;
    cin >> n >> m;
    cin >> width[0];
    int Min = width[0];
    int w;
    for(int i=1;i<n;i++){
        cin >> w;
        if(w>=Min) width[i]=Min;
        else {
            Min = w;
            width[i]=w;
        }
    }
    int l=0,r=n;
    int plant;
    int ans =0;
    bool flag=true;
    for(int i=0;i<m;i++){
        cin >> plant;
        if(!flag) continue;
        int mid ;
        int loc=-1;
        l=0;
        while(l<=r){
            mid = (l+r)/2;
            if(width[mid]>=plant) {
                l=mid+1;
                loc = mid;
            }
            else{
                r=mid-1;
            }
        }

        if(loc==-1){
            flag=false;
            continue;
        }
        //cout << "loc : " << mid << endl;
        ans++;
        r=loc-1;
    }
    cout << ans << endl;
}
阅读更多

没有更多推荐了,返回首页