HDU 4333 Revolving Digits (扩展KMP)

字符串匹配算法详解
本文深入探讨了字符串匹配算法,包括KMP算法的扩展版本。通过分析next数组、exnext数组和ep数组的构造过程,文章提供了详细的代码实现,并展示了如何利用这些数组进行高效的字符串匹配。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int maxn = 200005;

char str[maxn];
char tmp[maxn/2];
int next[maxn];
int ex[maxn];
int ep[maxn];

void get_next(char *s,int len)
{
    next[0]=0;
	for(int i=1;i<len;++i)
	{
		int j=next[i-1];
		while(j&&s[j]!=s[i]) j=next[j-1];
		if(s[j]==s[i]) j++;
		next[i]=j;
	}
}

void get_exnext(char *s,int len)
{
	int j=0;
	ex[0]=len;
	while(j+1<len&&s[j]==s[j+1]) j++;
	ex[1]=j;
	
	int k=1,p,L;
	for(int i=2;i<len;++i)
	{
		p=k+ex[k]-1;
		L=ex[i-k];
		if(i+L-1<p) ex[i]=L;
		else
		{
			j=max(0,p-i+1);
			while(i+j<len&&s[i+j]==s[j]) j++;
			ex[i]=j;
			k=i;
		}
	}
}

void ex_kmp(char *s,int lens,char *t,int lent)
{
	int j=0;
	while(j<lens && j<lent && s[j]==t[j]) j++;
	ep[0]=j;
	
	int k=0,p,L;
	for(int i=1;i<lens;++i)
	{
		p=k+ep[k]-1;
		L=ex[i-k];
		if(i+L-1<p) ep[i]=L;
		else
		{
			j=max(0,p-i+1);
			while(i+j<lens && j<lent && s[i+j]==t[j]) j++;
			ep[i]=j;
			k=i;
		}
	}
}

int main()
{
	int t;
	int lens,lent;
	int res1,res2,res3,tot;
	bool flag;
	scanf("%d",&t);
	for(int e=1;e<=t;++e)
	{
		scanf("%s",tmp);
		res1=0;
		res2=0;
		res3=0;
		flag=true;
		strcpy(str,tmp);
		strcat(str,tmp);
		lens=strlen(str);
		lent=strlen(tmp);
		get_next(tmp,lent);
		get_exnext(tmp,lent);
		ex_kmp(str,lens,tmp,lent);
		for(int i=0;i<lent;++i)
		{
			if(ep[i]==lent) res2++;
			else
			{
				if(str[i+ep[i]]<tmp[ep[i]]) res1++;
				else res3++;
			}
		}
		//kmp计算循环节 
	    if(lent%(lent-next[lent-1])==0) tot=lent/(lent-next[lent-1]);
		printf("Case %d: %d %d %d\n",e,res1/tot,res2/tot,res3/tot);
	}
	return 0;
}

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值