ysjy13
码龄2年
关注
提问 私信
  • 博客:17,347
    17,347
    总访问量
  • 26
    原创
  • 102,706
    排名
  • 180
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广西
  • 加入CSDN时间: 2022-12-11
博客简介:

ysjy13的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    136
    当月
    0
个人成就
  • 获得230次点赞
  • 内容获得1次评论
  • 获得199次收藏
创作历程
  • 26篇
    2024年
成就勋章
TA的专栏
  • 机器学习
    6篇
  • 网络安全
    8篇
  • 数学建模
    6篇
  • 数据仓库
    1篇
  • 数据库
    1篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

174人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

初步理解七__《面向互联网大数据的威胁情报 并行挖掘技术研究》

TAXII 是由 MITRE 公司开发的一个标准,旨在促进网络威胁情报的自动化交换。它定义了一系列的概念、协议和消息格式,使得不同的组织和产品/服务之间能够方便地共享可操作的网络威胁信息。TAXII 不是一个信息共享计划或应用,而是提供了一个框架,帮助组织提升对于新型威胁的态势感知能力,并便于组织选择合作伙伴共享信息。
原创
发布博客 2024.07.08 ·
1323 阅读 ·
29 点赞 ·
0 评论 ·
20 收藏

初步理解六__《面向互联网大数据的威胁情报 并行挖掘技术研究 》

CVE(Common Vulnerabilities and Exposures)的全称是“公共漏洞和暴露”,它是由MITRE(麻省理工学院的一个非营利性组织)在1999年发起的一个项目。CVE的目的是为各种公开知晓的信息安全漏洞和风险提供一个标准化的名称或标识符,以便全球范围内的安全专家、研究人员、IT专业人员等能够在一个统一的标准下讨论、分析和修复这些漏洞。定义:CAPEC是一个公开的常见攻击模式列表和分类系统,它描述了攻击者利用网络功能中的已知弱点所使用的常见属性和方法。目的。
原创
发布博客 2024.07.08 ·
822 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

初步理解五__《面向互联网大数据的威胁情报 并行挖掘技术研究》

融合标签的互信息熵作为输入特征是一种有效的方法,用于捕捉标签之间的相关性和共享信息量。然而,需要注意的是,互信息熵的计算可能涉及大量的数据处理和计算资源,因此在实际应用中需要权衡计算成本和性能提升之间的关系。具体来说,如果有一组融合后的标签,可以通过计算这些标签之间的互信息熵来构建输入特征。然后,这些特征可以被用作机器学习模型的输入,以学习标签之间的潜在模式和关系。在机器学习或数据处理的上下文中,将融合标签的互信息熵作为输入特征,意味着将不同标签之间的相关性或共享信息量作为模型的一个输入。
原创
发布博客 2024.07.08 ·
596 阅读 ·
11 点赞 ·
0 评论 ·
3 收藏

初步理解四__《面向互联网大数据的威胁情报 并行挖掘技术研究》

广播变量(Broadcast Variables)是 Spark 中用于在集群中共享数据的一种机制。*只读的变量,从而在每个节点(executor)上只复制一份数据,而不是每个任务都复制一份。**这样可以大大减少网络传输的数据量,提高了任务的执行效率。
原创
发布博客 2024.07.08 ·
1079 阅读 ·
12 点赞 ·
0 评论 ·
10 收藏

初步理解三__《面向互联网大数据的威胁情报 并行挖掘技术研究》

本报告旨在分析当前开源网络安全领域的现状、挑战、最佳实践及未来趋势。通过收集和分析多个开源项目、研究报告及行业专家的观点,我们为网络安全从业者提供了全面的洞察。威胁情报战术分类主要关注具体的网络攻击活动,这类情报包含IP地址、域名、文件哈希值等细节信息,旨在帮助安全团队检测并应对针对企业的具体网络威胁。战术威胁情报的多标签数据集是指每个样本(如网络攻击事件、恶意软件样本等)可以被分配多个战术标签(如勒索软件攻击、钓鱼攻击、DDoS攻击等)的数据集。
原创
发布博客 2024.07.08 ·
1435 阅读 ·
5 点赞 ·
0 评论 ·
17 收藏

初步理解二__《面向互联网大数据的威胁情报 并行挖掘技术研究 》

入侵指标(IoC),也被称为失陷指标,是指在网络或设备上发现的数据物件,可作为系统疑遭入侵的证据。这些数据物件包括但不限于不属于系统目录的文件、可疑IP地址、恶意软件的特征、恶意的URL、域名等。IoC是“确凿证据”,即已遭受损害的事后指标,它们是恶意行为者留下的有形线索或痕迹。
原创
发布博客 2024.07.08 ·
1530 阅读 ·
16 点赞 ·
0 评论 ·
5 收藏

初步理解一__《面向互联网大数据的威胁情报 并行挖掘技术研究》

定义:网络安全威胁情报是通过对网络攻击、网络漏洞、网络情报等进行系统分析,识别并汇总有关网络安全威胁的情报信息。这些信息包括攻击者的IP地址、攻击方式、攻击目标、攻击工具和攻击时段等。重要性主动防御:威胁情报使安全专业人员能够做出更明智的判断,从被动防御转为主动防御。风险降低:通过了解威胁参与者的决策过程,企业和组织可以智能投资、最大限度地降低风险。快速响应:帮助企业和个人更好地了解攻击者、更快地响应危机并预测威胁者的下一步行动。网络安全威胁情报是企业和个人在保障网络安全中不可或缺的一部分。
原创
发布博客 2024.07.07 ·
758 阅读 ·
21 点赞 ·
0 评论 ·
17 收藏

python爬虫和用腾讯云API接口进行翻译并存入excel,通过本机的Windows任务计划程序定时运行Python脚本!

因为在短时间内直接使用Get获取大量数据,会被服务器认为在对它进行攻击,所以拒绝我们的请求,自动把电脑IP封了。放到Al (gtp) 让他帮你修改代码就行 不要直接用我的。,又慢又多个单词组成的翻译不准确,且不到10次就崩了,从页面要获取的html源代码 这个也要教吗 懒了呀。东西也给家人们找好了,学吧,人懒不想总结太多了。在接下了 看文档的时候 注意一下到 这的时候。就是你要爬的页面 在页面鼠标 右键源代码。之后 要进行修改时间的可以看这个。让 al 修改的是这段。例,换到你自己想要的。
原创
发布博客 2024.07.04 ·
1330 阅读 ·
7 点赞 ·
0 评论 ·
8 收藏

优化类_蒙特卡罗模拟 (清风数学建模)

(i) 定义 蒙特卡罗⽅法⼜称统计模拟法,是⼀种随机模拟⽅法,以概率和统计理论⽅法为基础的⼀种计算⽅法,是使⽤随机数 (或更常⻅的伪随机数)来解决很多计算问题的⽅法。将所求解的问题同⼀定的概率模型相联系,⽤电⼦计算机实现统计模 拟或抽样,以获得问题的近似解。为象征性地表明这⼀⽅法的概率统计特征,故借⽤赌城蒙特卡罗命名。( 2 ) 提出 蒙特卡罗⽅法于20世纪40年代美国在第⼆次世界⼤战中研制原⼦弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J. 冯·诺伊曼⾸先提出。
原创
发布博客 2024.06.29 ·
856 阅读 ·
15 点赞 ·
0 评论 ·
9 收藏

预测类_岭回归和lasso回归 (清风数学建模)

在第七讲时,我们介绍了多元线性回归模型,估计回归系数使用的 是OLS,并在最后探讨了对于模型的影响。事实上, 回归中关于自变量的选择大有门道,问题造成回归系数的不显著,甚至造成OLS估计的失效。本节介绍到的岭回归和lasso回归在OLS回归模型的损失函数上,该惩罚项由回归系数的函数构成,一方面,加入的惩罚 项能够识别出模型中不重要的变量,对模型起到简化作用,可以看作逐 步回归法的升级版;另一方面,加入的惩罚项能够让模型变得可估计。
原创
发布博客 2024.06.28 ·
212 阅读 ·
7 点赞 ·
0 评论 ·
5 收藏

预测类_多元线性回归分析 (清风数学建模)

回归分析是数据分析中最基础也是最重要的分析工具,绝大多数的 数据分析问题,都可以使用回归的思想来解决。回归分析的任务就是, 通过研究自变量X和因变量Y的相关关系,尝试去解释Y的形成机制,进 而达到通过X去预测Y的目的。常见的回归分析有五类:线性回归、0‐1回归、定序回归、计数回归 和生存回归,其划分的依据是因变量Y的类型。本讲我们主要学习线性 回归。
原创
发布博客 2024.06.27 ·
347 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

优化类_图论最短路径问题_Floyd算法 (清风数学建模)

(2)如果某个节点(例如点3)不在从起点0到终点4的最短路径上,那么: 从0到4的最短路径的距离≤从0到3的最短路径的距离+从3到4的最短路径的距离 (注:这里写≤号是因为我们最终求出来的最短路径的走法可能不唯一)(1)如果某个节点(例如点8)位于从起点0到终点4的最短路径上,那么: 从0到4的最短路径的距离= 从0到8的最短路径的距离+从8到4的最短路径的距离。的最短路径的 一种算法,可以正确处理无向图或有向图(可以有负权重,但不可存在 负权回路)的最短路径问题。弗洛伊德算法,是解决。
原创
发布博客 2024.06.26 ·
222 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

优化类_图论最短路径问题 (清风数学建模)

讲解图论中的最 短路径问题。根据图的不同,我们将学习两种不同的算法: 迪杰斯特拉Dijkstra算法和Bellman‐Ford(贝尔曼‐福特)算法。
原创
发布博客 2024.06.26 ·
124 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

数据挖掘(DM)

数据仓库提供了数据挖掘所需的统一和一致的数据视图,帮助分析师和数据挖掘专家更有效地发现模式、趋势和关联。大数据环境下的数据挖掘面临更大的数据量和多样性,需要处理复杂的数据结构和实时或近实时的数据流。数据挖掘在大数据中的应用通常依赖于分布式计算和并行处理技术,以处理高速增长的数据量,并从中提取价值和见解。数据预处理的目标是减少数据挖掘过程中的误差,提高模型的准确性和可靠性,从而更有效地发现有用的模式和知识。在数据分析和机器学习中,理解和处理离群点是一个重要的课题,因为它们可能会影响模型的性能和结果的解释。
原创
发布博客 2024.06.26 ·
926 阅读 ·
21 点赞 ·
0 评论 ·
11 收藏

数据仓库(DW)部分

数据仓库的体系结构是一个复杂的系统,通过有效的数据集成、清洗、存储和分析,支持企业从历史数据中提取有价值的信息,并帮助决策者做出基于数据的决策。每个组成部分在整个体系结构中都有其独特的角色和功能,协同工作以实现数据驱动的业务目标。
原创
发布博客 2024.06.26 ·
677 阅读 ·
12 点赞 ·
0 评论 ·
13 收藏

预测类_相关性分析 (清风数学建模)

在统计学中,Q‐Q图(Q代表分位数Quantile)是一种通过比较两个概 率分布的分位数对这两个概率分布进行比较的概率图方法。首先选定分位数的对应概率区间集合,在此概率区间上,点(x,y)对应 于第一个分布的一个分位数x和第二个分布在和x相同概率区间上相同的分 位数。这里,我们选择正态分布和要检验的随机变量,并对其做出QQ图, 可想而知,如果要检验的随机变量是正态分布,那么QQ图就是一条直线。要利用Q‐Q图鉴别样本数据是否近似于正态分布,只需看Q‐Q图上的点 是否近似地在一条直线附近。
原创
发布博客 2024.06.25 ·
400 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

预测类_拟合算法 (清风数学建模)

与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟 合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所 有的数据点最为接近,
原创
发布博客 2024.06.25 ·
258 阅读 ·
9 点赞 ·
0 评论 ·
1 收藏

预测类_插值算法 (清风数学建模)

主要用来给我复习的 所以没有太多自己的文字理解(能看懂ppt 就很好了 (对于我))ppt 的截屏是清风老师的 问过他的允许了可以去b站搜清风数学建模 了解了解 后面部分要看完整视频是要钱的(个人觉得性价比是非常可以的)
原创
发布博客 2024.06.25 ·
372 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

评价类_模糊综合评价模型 (清风数学建模)

经典集合省略多级模型综合评价模型总结看因数集 是 几阶 是几阶模糊分清 评语集。
原创
发布博客 2024.06.25 ·
150 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

预测类_灰色关联分析 (清风数学建模)

ppt 的截屏是清风老师的 问过他的应许了可以去b站搜清风数学建模 了解了解 后面部分要看完整视频是要钱的(个人觉得性价比是非常可以的)
原创
发布博客 2024.06.24 ·
437 阅读 ·
3 点赞 ·
0 评论 ·
7 收藏
加载更多