hdu 4197 Popping Balloons 环状区间选点






需要做一个特殊的处理就是,因为新区间很可能排在其它老区间前面(比如x的新区间x2右端点是 PI-1,而y区间右端点是PI-2  )


正确的做法是将ri值严格限制在(-PI,PI] 范围内,如果ri超过了,le、ri同时减2*PI,小于了同时加2*PI。



Popping Balloons

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 444    Accepted Submission(s): 151

Problem Description
John loves programming contests. There is just one problem: his team is not very good at programming. This usually doesn't bother him, but what does bother him is that everyone gets a balloon for every correct submission. John's team never gets any balloons, while other teams get one balloon after the other. This frustrates him, so John would like to see that all other teams have no balloons either.
This year he has a plan to achieve just that. John has hired a ninja to pop all balloons for him. At any time during the contest, he can call for the ninja to come down through a hole in the ceiling and pop all balloons by using his shurikens (ninja stars), before leaving through the hole in the ceiling again. Of course the ninja wants to use as few of his precious shurikens as possible. Therefore, John must write a program that computes how many shurikens are needed to pop all balloons. Because all balloons are usually at approximately the same height, he can model the problem as a 2-dimensional problem. He sets the location of the ninja (where he comes in) as the origin (0, 0) and uses circles to model the balloons. To be on the safe side, these circles can have different radii. Shurikens are assumed to be thrown from the origin and move in a straight line. Any circle/balloon crossed by this haline will be popped by this shuriken. The question then becomes: how many halines rooted at the origin are necessary to cross all circles?
Of course, as mentioned above, John is not a very good programmer, so he asks you to make this program for him. Can you help him out? You might get a balloon if you get it right...

The first line of the input contains a single number: the number of test cases to follow. Each test case has the following format:
1.One line with a single integer n (0 <= n <= 1,000): the number of balloons.
2.n lines, each containing three integers xi,yi (-10^4 <= xi,yi <= 10^4), and ri (1 <= ri <= 10^4),describing the circle used to model the ith balloon, where (xi, yi) is the center of the circle and ri is the radius.
You can assume that two lines (rooted at the origin) that are tangent to two distinct circles make an angle of at least 10^-6 radians at the origin. Furthermore, the circles do not cross each other (but can touch) and do not contain the origin.

For every test case in the input, the output should contain one integer on a single line: the minimum number of shurikens the ninja needs to pop all balloons.

Sample Input
2 5 2 0 1 5 0 2 0 3 2 -4 0 2 0 -2 1 5 4 1 3 5 -5 3 0 -4 2 -4 4 3 -10 3 3

Sample Output
4 3
No balloons were harmed during the making of this problem.


lcy   |   We have carefully selected several similar problems for you:   4198  4199  4200  4202  4203 

Statistic |  Submit |  Discuss |  Note

using namespace std;

#define all(x) (x).begin(), (x).end()
#define for0(a, n) for (int (a) = 0; (a) < (n); (a)++)
#define for1(a, n) for (int (a) = 1; (a) <= (n); (a)++)
#define sqr(x)  ((x)*(x))
#define eps (1e-7)
typedef long long ll;
typedef pair<int, int> pii;
const int INF =0x3f3f3f3f;
const int maxn= 1000   ;
const   double  PI=4.0*atan(1.0);

int n,N;
struct Seg
    double  le,ri;
    Seg(double  le,double  ri):le(le),ri(ri){}
    bool operator<(const Seg y)const
         return ri<y.ri;


void getSeg(int ind,double  x,double  y,double  r)
    double  dis=sqrt( sqr(x)+sqr(y) );
    double  rad1= asin(r/dis);
    double  Rad=atan2(y,x);
    double  le=Rad-rad1;
    double  ri=Rad+rad1;
    if(ri<=-PI) le+=2*PI,ri+=2*PI;
    else if(ri>PI) le-=2*PI,ri-=2*PI;


void work()
    int ans=n;
    for(int i=1;i<=n;i++)
        int tot=0;
        double  now=-INF;
        for(int j=i;j<=i+n-1;j++)
            double  le=a[j].le;
            double  ri=a[j].ri;

int main()
   int T;scanf("%d",&T);
       double  x,y,r;

   return 0;

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页