统计学 回归分析( Regression Analysis)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/YtdxYHZ/article/details/51901236

Regression Analysis 是一种用来估算两个或者多个变量之间关系.


它有两个明显的好处:

1.能显示自变量和因变量之间的关系

2.能显示自变量和因变量之间的关系的强弱


有多少种:

1. Linear Regression (线性回归)

最常用的回归方法.

因变量是连续的; 自变量可以是连续的,也可以是离散的; 线性的.

注意:

  1. 自变量和因变量的关系必须是线性的
  2. 噪点对 线性回归 的影响是致命 ( 去除噪点)
  3. 自变量可以为多个( multiple linear regression)

2. Logistic Regression 

用来估算因变量发生的概率,前提是因变量是binary 结果.

注意:

  1. 通常被用在classification 问题上
  2. 不要求自变量和因变量的关系是线性的
  3. 要求更大的样本数据 - 使用maximum likelihood 方法在大样本 下更加精确
  4. 因变量之间不应该相互影响
  5. 如果因变量是ordinal ,那么称为 ordinal logistic regression  了解ordinal


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页