特征值和特征向量的实际意义

转载 2018年04月17日 14:36:15

本文转自知乎大牛。
从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。
矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。
我们通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其发生拉伸的程度如何(特征值大小)。这样做的意义在于,看清一个矩阵在那些方面能产生最大的效果(power),并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。

更新与2015.12.02 今天无意中看到了这篇介绍,感觉讲的很清晰,特与大家分享!
连接:http://jingyan.baidu.com/article/3065b3b68c6bb6becff8a488.html
大学中都学过矩阵,是不是矩阵感觉很抽象,晦涩难懂,和生活实际挂不上边,其中矩阵有一个叫特征向量的东西,只要学过矩阵的,都会求它,但是他是做什么的,书本上却没说,只是说相当有用,但是在何处用,大家只能说 I do not know ,这里给大家说明下,特征向量的几何意义,让大家一目了然
这里写图片描述

工具/原料


记得带着脑子哦
方法/步骤
如果说一个向量v是方阵A的特征向量,将一定可以表示成下面的形式:
这里写图片描述

这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量。特征值分解是将一个矩阵分解成下面的形式:
这里写图片描述

其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对角阵,每一个对角线上的元素就是一个特征值。首先,要明确的是,一个矩阵其实就是一个线性变换,因为一个矩阵乘以一个向量后得到的向量,其实就相当于将这个向量进行了线性变换。比如说下面的一个矩阵:
这里写图片描述

它其实对应的线性变换是下面的形式:
这里写图片描述

因为这个矩阵M乘以一个向量(x,y)的结果是:
这里写图片描述

上面的矩阵是对称的,所以这个变换是一个对x,y轴的方向一个拉伸变换(每一个对角线上的元素将会对一个维度进行拉伸变换,当值>1时,是拉长,当值<1时时缩短),当矩阵不是对称的时候,假如说矩阵是下面的样子:
这里写图片描述

它所描述的变换是下面的样子:
这里写图片描述

这其实是在平面上对一个轴进行的拉伸变换(如蓝色的箭头所示),在图中,蓝色的箭头是一个最主要的变化方向(变化方向可能有不止一个),如果我们想要描述好一个变换,那我们就描述好这个变换主要的变化方向就好了。反过头来看看之前特征值分解的式子,分解得到的Σ矩阵是一个对角阵,里面的特征值是由大到小排列的,这些特征值所对应的特征向量就是描述这个矩阵变化方向(从主要的变化到次要的变化排列)
这里写图片描述

当矩阵是高维的情况下,那么这个矩阵就是高维空间下的一个线性变换,这个线性变化可能没法通过图片来表示,但是可以想象,这个变换也同样有很多的变换方向,我们通过特征值分解得到的前N个特征向量,那么就对应了这个矩阵最主要的N个变化方向。我们利用这前N个变化方向,就可以近似这个矩阵(变换)。也就是之前说的:提取这个矩阵最重要的特征。总结一下,特征值分解可以得到特征值与特征向量,特征值表示的是这个特征到底有多重要,而特征向量表示这个特征是什么,可以将每一个特征向量理解为一个线性的子空间,我们可以利用这些线性的子空间干很多的事情。不过,特征值分解也有很多的局限,比如说变换的矩阵必须是方阵。
这里写图片描述
注意事项
最后一个条是关键,一定要仔细看

特征值与特征向量的意义

特征值与特征向量的意义
  • Jemila
  • Jemila
  • 2016-09-19 15:09:00
  • 2962

矩阵的特征向量与特征值的几何意义

我们都知道说到矩阵的特征向量和特征值的时候,都会提到Ax=λx这个式子,也就是众所周知的特征值方程。下面就从这里展开,来解释一下特征向量和特征值的几何意义。 首先允许我介绍一下特征值方程(Ap=λ...
  • ZJQ_1990
  • ZJQ_1990
  • 2015-09-16 22:19:20
  • 3979

所谓的特征值和特征向量

在线性代数的最后,我们都会学矩阵的特征值分解,我们知道一个方阵A特征值分解后就得到特征向量和特征值了。那么,这个所谓的特征值和特征向量到底是什么东西呢? 首先给出概念上的一种解释。所谓的特征值和特...
  • woainishifu
  • woainishifu
  • 2017-07-31 20:36:36
  • 1412

如何理解特征值和特征向量

矩阵充当的映射是对特征向量缩放的过程,缩放因子就是特征值.
  • ljhandlwt
  • ljhandlwt
  • 2017-08-02 15:45:54
  • 1995

Matlab_求最大特征值和特征向量

A=[1,4,2,4; 1/4,1,1/2,1; 1/2,2,1,1/2; 1/4,1,2,1]; A=[3,2,4; 2,0,2; 4,2,3] [x,y]=...
  • qq_32095939
  • qq_32095939
  • 2017-08-30 12:57:36
  • 1226

特征值和特征向量的几何和物理意义

我们知道,矩阵乘法对应了一个变换,是把任意一个向量变成另一个方向或长度都大多不同的新向量。在这个变换的过程中,原向量主要发生旋转、伸缩的变化。如果矩阵对某一个向量或某些向量只发生伸缩变换,不对这些向量...
  • dongtinghong
  • dongtinghong
  • 2013-11-06 00:05:38
  • 11503

特征值与特征向量的几何意义

特征值与特征向量的几何意义(转) 2016年9月9日 ReidHolmes Comments 0 Comment   矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一...
  • zyex1108
  • zyex1108
  • 2016-09-13 21:42:20
  • 1255

关于矩阵的特征向量和特征值的含义

知乎上看到一篇讲解矩阵的特征值和特征向量的文章,感觉写的很有意思,参考链接:https://www.zhihu.com/question/21874816                  所以总结一...
  • alvinlyb
  • alvinlyb
  • 2017-12-25 14:31:20
  • 263

理解矩阵特征值与特征向量

从线性空间的角度看,在一个定义了内积的线性空间里,对一个N阶对称方阵进行特征分解,就是产生了该空间的N个标准正交基,然后把矩阵投影到这N个基上。N个特征向量就是N个标准正交基,而特征值的模则代表矩阵在...
  • on2way
  • on2way
  • 2014-12-25 18:50:33
  • 3898

基于Matlab来计算矩阵特征值和特征向量

简介 线性代数相关领域中,矩阵操作一般是核心内容。对矩阵的特征值和特征向量的计算一直在数值计算占有重要位置。这里介绍一种根据指定个数来返回矩阵特征值及特征向量的方式。 实例 % By lyq...
  • Evan123mg
  • Evan123mg
  • 2015-03-22 16:35:32
  • 1959
收藏助手
不良信息举报
您举报文章:特征值和特征向量的实际意义
举报原因:
原因补充:

(最多只允许输入30个字)