优化方法——梯度下降

假设目标函数为 J ( θ ) J (\theta) J(θ) ,则一阶偏导为 ∇ θ J ( θ ) \nabla_{\theta} J(\theta) θJ(θ) η \eta η为迭代步长。

(1)批处理

Batch Gradient Descent
参数更新: θ = θ − η ∇ θ J ( θ ) \theta=\theta-\eta\nabla_{\theta}J(\theta) θ=θηθJ(θ)
由上式观察知,每进行一次参数更新,需要计算整个数据集的样本。因此,该方法存在以下不足:
(1)不适合大的数据集,因为每次更新需要重复扫描所有的样本,耗时;
(2)当陷入鞍点或较差的局部最优点时,梯度很难跑出来,因此可能难以保证每次得到的都是最优解。

(2)单样本处理

Stochastic Gradient Descent
参数更新: θ = θ − η ∇ θ J ( x ( i ) , y ( i ) ; θ ) \theta=\theta-\eta\nabla_{\theta}J(x^{(i)},y^{(i)};\theta) θ=θηθJ(x(i),y(i);θ)
显然,每次更新只需要计算一个样本,但是因为样本的随机性,会导致梯度的更新产生较大的振荡。

(3)小批次样本处理

Mini-Batch Gradient Descent
参数更新: θ = θ − η ∇ θ J ( x ( i : i + k ) , y ( i : i + k ) ; θ ) \theta=\theta-\eta\nabla_{\theta}J(x^{(i:i+k)},y^{(i:i+k)};\theta) θ=θηθJ(x(i:i+k),y(i:i+k);θ)


综上三种方法,它们主要包含下面两点不足:
(1) η \eta η选择困难,且固定。当 η \eta η选择较大的时候,则靠近快收敛处时,容易跳过收敛点;当其较小时,梯度更新蛮,效率不高。
(2)这三种方法都易收敛到局部最优点。此外,在有些情况下,易陷入鞍点。

因此,基于以上不足,有人提出了一种基于动量的方法。

Momentum

该方法借鉴物理上的动量思想(所以说学科之间是相通的嘛>O<),通过累积之前的动量来加速当前的梯度。
首先,定义 m t , m t − 1 m_{t},m_{t-1} mt,mt1:当前时刻的动量,之前累积的动量; μ \mu μ:动量因子,一般设为0.9
参数更新:
m t = μ m t − 1 + η ∇ θ J ( θ ) m_{t}=\mu m_{t-1}+\eta\nabla_{\theta}J(\theta) mt=μmt1+ηθJ(θ)
θ t = θ t − 1 − m t \theta_{t}=\theta_{t-1}-m_{t} θt=θt1mt
该方法最大的优点就是抑制了动荡。
其有以下一些特点:
(1)参数最开始更新的时候,如果加上前一次参数更新值,当前后2次下降方向一致,乘上较大的 μ \mu μ能够很好地加速,从而加快收敛;
(2)参数更新中期,可能会在局部最小值附近来回振荡,梯度趋向于0, μ \mu μ使得更新幅度增大,能够跳出陷阱,避免了陷入局部最优点和鞍点的问题;
(3)在梯度方向改变时,该方法能降低参数更新的速度,故而减小了振荡;在梯度方向相同的时候,该方法可以加快参数更新,加速收敛,提高效率。

PS:第一次写,不足之处,还请各位大神多指教…

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值