通过[0,1]的均匀分布算圆周率,数字模拟方法

思路

通过均匀分布,随机生成很多坐标在[0,1]上的点,构成一个矩形。

通过产生大量的随机数,算出概率P,那么圆周率就是4P

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 18 16:36:44 2019

@author: zhao
"""

from random import random
darts=1000*1000*10
hits=0.0
for i in range(1,darts+1):
    x,y=random(),random()
    dist=pow(x**2+y**2,0.5)
    if dist<=1.0:
        hits=hits+1
pi=4*(hits/darts)
print("pi={}".format(pi))

结果

pi=3.14245

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值