齐次坐标

一直对齐次坐标这个概念的理解不够彻底,只见大部分的书中说道“齐次坐标在仿射变换中非常的方便”,然后就没有了后文,今天在一个叫做“三百年 重生”的博客上看到一篇关于透视投影变换的探讨的文章,其中有对齐次坐标有非常精辟的说明,特别是针对这样一句话进行了有力的证明: “齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”—— F.S. Hill, JR。
     由于作者对齐次坐标真的解释的不错,我就原封不动的摘抄过来:
     对于一个 向量 v ,使得 v = v1 a + v2 b + v3 c           而对于一个),使得 p – o = p1 a + p2 b + p3 c            是坐标系下表达一个)(3是坐标基矩阵,右边的列向量分别是向量v 这样,向量和点在同一个基下就有了不同的表达:3D 个代数分量是 0 的第 4 个代数分量表示 3D 如果写成( 1,4,7,0 下面是如何在普通坐标 (Ordinary Coordinate) (1) 从普通坐标转换成齐次坐标时
是个点,则变为(x,y,z,1);
是个向量,则变为(x,y,z,0)
(2)   
,则知道它是个点,变成(x,y,z);
,则知道它是个向量,仍然变成(x,y,z)
 
、缩放S此外,对于一个普通坐标的,其中w 的齐次坐 )、( -0.1, -0.4, -0.7, -0.1 因此,如果把一个点从普通坐标变成齐次坐标,给 x,y,z 个分量 w 前三个坐标同时除以第 4 由于齐次坐标使用了 4 所说,仿射(线性)变换的进行 以上很好的阐释了齐次坐标的作用及运用齐次坐标的好处。其实在图形学的理论中,很多已经被封装的好的API也是很有研究 <span times="" new="" roman';="" mso-hansi-font-family:="" 'times="" roman'"="" style="padding: 0px; margin: 0px; font-family: 宋体; font-size: 12pt; ">学习者,除了知其然必须还得知其所以然。<span times="" new="" roman';="" mso-hansi-font-family:="" 'times="" roman'"="" style="padding: 0px; margin: 0px; font-family: 宋体; font-size: 12pt; ">这样在遇到问题的时候才能迅速定位问题的根源,从而解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值