关于连续函数的介值定理

86日,J.Keisler《基础微积分》第3.8节连续函数的性质(袖珍电子书)已经上传互联网,使国内读者开阔了眼界,知道无穷小微积分学的”不同风味“在连续函数研究领域的具体表现。

大家知道,在传统微积分学里面,有一个关于连续函数的”零点定理“,也叫做”介值定理“。这是一条微积分学的基本定理,非常重要,不可轻视。该定理的陈述如下:

INTERMEDIATE VALUE THEOREM

Suppose the real function f is continuous on the closed interval [a,b] and f(x) is positive at one endpoint and negative at the other endpoint.Then f has a zero in the interval (a,b) ; that is, f(c) = 0 for some real c in (a,b).

           这个定理的结论看起来非常显然,似乎无需给出严格的”数学证明“。我们现代文明人不能局限于”直观性“(拍脑袋),把数学当成”魔术“、变戏法,看热闹。根据维基网站:”This theorem was first proved by Bernard Bolzano(波尔查诺)in1817. Augustin-Louis Cauchy(哥西)provided a proof in 1821“,值得注意的是,哥西使用的证明思路就是无穷小方法。

           在我国普通高等教育”十一五“国家级规划教材同济大学《高等数学》的第71页,对此定理的严格证明加以省略,说”在此不予证明“。这是不能允许的,不证明该定理,却拿它当成”基本定理“再去证明别的”定理“,越搞越糊涂。难怪我们周边有不少”小糊涂“(大学毕业生),整天乐呵呵的,傻样子很可爱。

        其实证明并不困难,J.Keisler说:

         We assume f(a) 0 f(b).Let H be a positive infinite hyperinteger(超整数)and partition the interval [a,b]* into H equal parts

                                                                     a,a+δ, a+2δ,……a+Hδ = b.

Let a+Kδ be the last partition point at which f(a+Kδ) < 0. Thus

                                   f(a+Kδ) < 0 f(a+(K+1)δ).

Since f is continuous, f(a+Kδ) is infinitely close to f(a+(K+1)δ). We conclude that f(a+Kδ) ≈ 0 (Figure3.8.7). We take c to be the standard part of a+Kδ, so that

                               f(c) = st (f (a + Kδ)) = 0.

                J.Keisler的数学证明方法是典型的“无穷小证明”,其正确性不高于,也不低于传统微积分学所使用的方法,请见:菲氏《微积分学教程》。



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值