一分钟分清概率函数,分布函数,概率密度函数

很多初学概率论的同学一定会被这几个概念迷惑,概率函数、分布函数、密度函数,下面就要我们用五分钟的时间来搞定他们!

概率函数:用函数的形式来表达概率
P i = P ( X = a i ) ( i = 1 , 2 , 3... n ) P_i=P\left(X=a_i\right) \qquad \left(i=1,2,3...n \right) Pi=P(X=ai)(i=1,2,3...n)

概率分布:离散型随机变量的值分布和值的概率分布列表

x123456
P 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61 1 6 \frac{1}{6} 61

分布函数:概率函数取值的累加结果,所以它又叫累积概率函数

P { X = X k } = P k k = 1 , 2 , 3... P\left\{ X=X_k \right\}=P_k \qquad k=1,2,3... P{X=Xk}=Pkk=1,2,3...

F ( x ) = P ( X ⩽ x ) = ∑ X ⩽ x P k F\left(x\right)=P\left(X\leqslant x\right)=\sum_{X\leqslant x}P_k F(x)=P(Xx)=XxPk

概率密度函数:连续型随机变量的“概率函数”
在这里插入图片描述
左边是F(x)连续型随机变量分布函数画出的图形,右边是f(x)连续型随机变量的概率密度函数画出的图像,它们之间的关系就是,概率密度函数是分布函数的导函数。

右图(概率函数)阴影面积即为x取值在a,b之间的总概率,对应左图(分布函数),即F(b)-F(a)

微信扫码关注公众号,后台回复「电子书福利」,35本深度学习、机器学习、自然语言处理、算法领域的经典电子书,我们将一次性统统分享给大家!

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值