很多初学概率论的同学一定会被这几个概念迷惑,概率函数、分布函数、密度函数,下面就要我们用五分钟的时间来搞定他们!
概率函数:用函数的形式来表达概率
P
i
=
P
(
X
=
a
i
)
(
i
=
1
,
2
,
3...
n
)
P_i=P\left(X=a_i\right) \qquad \left(i=1,2,3...n \right)
Pi=P(X=ai)(i=1,2,3...n)
概率分布:离散型随机变量的值分布和值的概率分布列表
| x | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|
| P | 1 6 \frac{1}{6} 61 | 1 6 \frac{1}{6} 61 | 1 6 \frac{1}{6} 61 | 1 6 \frac{1}{6} 61 | 1 6 \frac{1}{6} 61 | 1 6 \frac{1}{6} 61 |
分布函数:概率函数取值的累加结果,所以它又叫累积概率函数
P { X = X k } = P k k = 1 , 2 , 3... P\left\{ X=X_k \right\}=P_k \qquad k=1,2,3... P{X=Xk}=Pkk=1,2,3...
F ( x ) = P ( X ⩽ x ) = ∑ X ⩽ x P k F\left(x\right)=P\left(X\leqslant x\right)=\sum_{X\leqslant x}P_k F(x)=P(X⩽x)=X⩽x∑Pk
概率密度函数:连续型随机变量的“概率函数”

左边是F(x)连续型随机变量分布函数画出的图形,右边是f(x)连续型随机变量的概率密度函数画出的图像,它们之间的关系就是,概率密度函数是分布函数的导函数。
右图(概率函数)阴影面积即为x取值在a,b之间的总概率,对应左图(分布函数),即F(b)-F(a)
微信扫码关注公众号,后台回复「电子书福利」,35本深度学习、机器学习、自然语言处理、算法领域的经典电子书,我们将一次性统统分享给大家!




1万+

被折叠的 条评论
为什么被折叠?



