什么是汉明重量

该博客介绍如何计算一个无符号整数在二进制表示中1的个数,即汉明重量。通过位运算的方式,利用位掩码逐位与操作,统计1的个数。此外,还提及了一种更简单的解决方案,通过连续右移操作来确定1的总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

191. 位1的个数 【简单题】【位运算】

编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。

输入:00000000000000000000000000001011
输出:3
解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。

输入:00000000000000000000000010000000
输出:1
解释:输入的二进制串 00000000000000000000000010000000 中,共有一位为 '1'。

输入:11111111111111111111111111111101
输出:31
解释:输入的二进制串 1111
### 汉明重量的定义与计算方法 汉明重量(Hamming Weight)是指在一个二进制字符串中,非零位(即 `1` 的数量)的总数。例如,给定二进制字符串 `10011010`,其中共有 4 个 `1`,因此该字符串的汉明重量为 4。 以下是几种常见的汉明重量计算方法及其 Python 实现: --- #### 方法一:逐位遍历法 通过逐一检查每一位是否为 `1` 来统计总数量。这种方法简单直观,适用于任何长度的整数。 ```python def hamming_weight_bitwise(n): count = 0 while n: count += n & 1 # 判断最低位是否为1 n >>= 1 # 右移一位 return count ``` 此方法的时间复杂度为 O(k),其中 k 是输入数值的二进制表示中的位数[^1]。 --- #### 方法二:Brian Kernighan 算法 利用按位操作技巧减少不必要的迭代次数。每次循环都会清除掉最右侧的一个 `1`,直到整个数值变为 `0`。 ```python def hamming_weight_kernighan(n): count = 0 while n: n &= n - 1 # 清除最右边的1 count += 1 return count ``` 这种优化后的算法平均时间复杂度更低,在稀疏分布的情况下表现更优[^3]。 --- #### 方法三:查表法 预先构建一个小范围内的汉明权重查找表,再分段处理大整数。适合固定大小的数据类型如 32 或 64 位整型。 ```python # 预先创建一个字节级别的hamming weight查询表 lookup_table = [bin(i).count('1') for i in range(256)] def hamming_weight_lookup(n): result = 0 while n != 0: result += lookup_table[n & 0xff] # 提取低8位并查表 n >>= 8 # 移动到下一个字节 return result ``` 这种方式可以显著提高性能特别是当频繁调用时因为减少了重复运算量。 --- ### 性能对比分析 | **方法** | **优点** | **缺点** | |------------------|--------------------------------------|--------------------------| | 逐位遍历法 | 易于理解 | 效率较低 | | Brian Kernighan | 减少不必要的比较 | 对密集'1's效率稍逊 | | 查表法 | 极高的执行速度 | 占用额外内存 | 实际应用应根据具体场景需求权衡选择合适的技术方案[^1]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值