如何用裸机从零开始配置深度学习环境

安装显卡驱动

没有安装显卡驱动时,nvidia-smi命令失败

  1. 关闭linux的桌面模式sudo service lightdm stop
  2. init 3打开非图形化界面进行安装
  3. https://www.nvidia.cn/Download/index.aspx?lang=cn下载合适的显卡驱动,我们这下载的是NVIDIA-Linux-x86_64-450.66.run
  4. 给文件加可执行权限chmod +x NVIDIA-Linux-x86_64-450.66.run
  5. 安装即可sudo./NVIDIA-Linux-x86_64-440.44.run
  6. nvidia-smi可以看到显卡内容

安装CUDA

  1. https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal下载cuda10,可以用wget,也可以手动下载再上传
  2. 安装cuda,并指定安装目录sudo sh cuda_10.0.130_410.48_linux.run --silent --toolkit --toolkitpath=/home/env/cuda10
  3. https://developer.nvidia.com/rdp/cudnn-archive#a-collapse51b下载cudnn(要先注册)
  4. 将cudnn中的文件转移到cuda下
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
  1. 将 环境变量配置文件在当前用户主目录下vim .bashrc,填入如下配置
export PATH=/usr/local/cuda-8.0/bin:$PATH export CUDA_HOME=/usr/local/cuda-8.0/bin:$CUDA_HOME export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH
  1. nvcc -V查看是否配置成功

安装anaconda

  1. 下载anaconda,运行sh Anaconda3-2020.07-Linux-x86_64.sh
  2. 配置conda环境,在当前用户主目录下vim .bashrc,填入
export PATH=/home/env/anaconda3/bin:$PATH

配置虚拟环境

  1. 配置清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
  1. 创建虚拟环境conda create -n env_name python=3.6
  2. 安装各种包
  3. 运行程序

公众号关注我,带你拿大厂offer >_<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值