传统文本相似度算法

本文介绍了三种文本相似度算法:TF-IDF通过词频与逆文档频率衡量关键词重要性;BM25是用于搜索相关性评分的算法,考虑了文档长度因素;Simhash通过哈希转换与累加计算,判断文本相似性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TF-IDF

TF-IDF(Term Frequency-inverse Document Frequency)是一种针对关键词的统计分析方法,用于评估一个词对一个文件集或者一个语料库的重要程度。一个词的重要程度跟它在文章中出现的次数成正比,跟它在语料库出现的次数成反比。这种计算方式能有效避免常用词对关键词的影响,提高了关键词与文章之间的相关性。

其中TF指的是某词在文章中出现的总次数,该指标通常会被归一化定义为:
t f i , j = n i , j ∑ k n k , j tf_{i,j} = \frac{n_{i,j}}{\sum_{k}n_{k,j}} tfi,j=knk,jni,j

以上式子中 n i , j n_{i,j} ni,j是该词在文件 d j d_j dj中的出现次数,而分母则是在文件 d j d_j dj中所有字词的出现次数之和。通俗的来讲,TF= (某词在文档中出现的次数/文档的总词量),这样可以防止结果偏向过长的文档(同一个词语在长文档里通常会具有比短文档更高的词频)

IDF为逆向文档频率,包含某词语的文档越少,IDF值越大,说明该词语具有很强的区分能力,
I D F i = lg ⁡ ∣ D ∣ ∣ j : t i ∈ d j ∣ + 1 IDF_{i} = \lg \frac{|D|}{|{j:t_i \in d_j}|+1} IDFi=lgj:tidj+1D

以上式子中, ∣ D ∣ |D| D表示语料库中的文件总数, ∣ j : t i ∈ d j ∣ |j:t_i \in d_j| j:tid

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值