协同过滤与矩阵分解

本文介绍了协同过滤的基本原理,包括基于用户的UserCF和基于物品的ItemCF,以及它们在实际应用中的优缺点。接着,讨论了矩阵分解作为解决协同过滤数据稀疏性问题的方法,通过梯度下降优化目标函数实现隐向量的生成,以提高推荐的准确性和泛化能力。矩阵分解相比协同过滤具有空间复杂度低、泛化能力强和扩展性好等优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 协同过滤

“协同过滤”就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程。下面介绍基于用户的UserCF:

  1. 生成共现矩阵。假设有m个用户,n个物品,每个用户会对n个物品中的一个或者几个进行评分,未评分的物品分值就用问号表示,则所有m个用户对物品的评分可形成一个 m ∗ n m*n mn的评分矩阵,也就是协同过滤中的共现矩阵

  2. 生成共现矩阵后,推荐问题就转换成了预测矩阵中问号的值的过程。

  3. 通过每个用户对所有物品的评分向量,利用余弦相似度、皮尔逊相关系数(可以引入物品平均分的方式减少物品评分)等,找到与需要推荐用户X最相似的Top n用户

  4. 利用用户相似度和相似用户评分的加权平均偶的目标用户的评价预测。下式中, w u , s w_{u,s} wu,s是物品u和用户s的相似度, u s , p u_{s,p} us,p是用户s对物品p的评分。

    R u , p = ∑ s ∈ S ( w u , s ⋅ R s , p ) ∑ s ∈ S w u , s R_{u,p} = \frac{\sum_{s \in S}(w_{u,s} \cdot R_{s,p})}{\sum_{s \in S}w_{u,s}} Ru,p=sSwu,s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值