不困先生说
码龄5年
关注
提问 私信
  • 博客:138,104
    138,104
    总访问量
  • 98
    原创
  • 1,961,168
    排名
  • 76
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-01-10
博客简介:

算法岗从零到无穷

查看详细资料
个人成就
  • 获得101次点赞
  • 内容获得19次评论
  • 获得475次收藏
  • 博客总排名1,961,168名
创作历程
  • 2篇
    2021年
  • 98篇
    2020年
成就勋章
TA的专栏
  • 算法岗面试宝典
    16篇
  • 一天一道算法题
    63篇
  • 机器学习
    10篇
  • 国科大
    4篇
  • 自然语言处理
    3篇
  • 一天一道面试题
    2篇
  • bug专栏
    3篇
兴趣领域 设置
  • 人工智能
    nlp
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

如何入门推荐系统

前言推荐系统是一个很工程的领域,相比NLP,CV等理论性较强的AI方向入门难度要低一点。推荐的工作大体可以分为召回和排序,首先从数以万计的items中召回用户可能感兴趣的百万级的items,这里的数量级按照items的数量级来决定,items有可能是音乐(网易云音乐)、电影书籍(豆瓣),商品(淘宝京东)等等;然后从对筛选过一遍的items做排序。当然其实再往细说还有精排粗排等流程,这里作为知识普及就不细说了。召回主要通过多路召回,比如MostPoP(选出平台最受用户喜爱商品top10,推荐给每一个用户)
原创
发布博客 2021.01.14 ·
532 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

推荐系统入门:详解前深度学习时代常见模型

1. 前深度学习时代1.1 协同过滤《Amazon.com Recommenders Item-to-Item Collaborative Filtering》“协同过滤”就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程。下面介绍基于用户的UserCF:生成共现矩阵。假设有m个用户,n个物品,每个用户会对n个物品中的一个或者几个进行评分,未评分的物品分值就用问号表示,则所有m个用户对物品的评分可形成一个m∗nm*nm∗n的评分矩阵,也就是协同
原创
发布博客 2021.01.13 ·
579 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

协同过滤与矩阵分解

1. 协同过滤“协同过滤”就是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程。下面介绍基于用户的UserCF:生成共现矩阵。假设有m个用户,n个物品,每个用户会对n个物品中的一个或者几个进行评分,未评分的物品分值就用问号表示,则所有m个用户对物品的评分可形成一个m∗nm*nm∗n的评分矩阵,也就是协同过滤中的共现矩阵。生成共现矩阵后,推荐问题就转换成了预测矩阵中问号的值的过程。通过每个用户对所有物品的评分向量,利用余弦相似度、皮尔逊相关系
原创
发布博客 2020.12.28 ·
3530 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

FM详解

1. 基本概念常见的线性表达式如下:y=ω0+∑i=1nωixiy=\omega_0 + \sum^{n}_{i=1}\omega_ix_iy=ω0​+i=1∑n​ωi​xi​其中ω0\omega_0ω0​为初始权值,或者理解为偏置项,ωi\omega_iωi​为每个特征xix_ixi​对应的权值。可以看到,这种线性表达式只描述了每个特征与输出的关系。FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。y=ω0+∑i=1nωixi+∑i=1n−1∑j=i+1nωijxi
原创
发布博客 2020.12.16 ·
1064 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

国科大 自然语言处理 期末复习总结

学长的话:之前做的笔记,现在拿出来翻了一翻,我研一一直在实验室搬砖,课基本没怎么上,期末剩下两周开始复习nlp,ml,ai三门专业课,均分也有90+。所以现在还没复习的学弟学妹们不要慌,看看我整理的两个复习笔记,没问题的!上次考试知识点连词引起歧义的结构编辑距离(插入、删除、替换、交换)有限状态自动机与正则文法之间的转化复杂特征集的交集三元文法(Tri-grams)评价机器翻译译文质量的方法分词系统的准确率、召回率和F1依存关系树的性能指标正向最.
原创
发布博客 2020.12.02 ·
6145 阅读 ·
19 点赞 ·
2 评论 ·
100 收藏

传统文本相似度算法

TF-IDFTF-IDF(Term Frequency-inverse Document Frequency)是一种针对关键词的统计分析方法,用于评估一个词对一个文件集或者一个语料库的重要程度。一个词的重要程度跟它在文章中出现的次数成正比,跟它在语料库出现的次数成反比。这种计算方式能有效避免常用词对关键词的影响,提高了关键词与文章之间的相关性。其中TF指的是某词在文章中出现的总次数,该指标通常会被归一化定义为:tfi,j=ni,j∑knk,jtf_{i,j} = \frac{n_{i,j}}{\sum
原创
发布博客 2020.12.01 ·
507 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

一文解决面试高频的:搜索旋转排序数组问题

本文部分参考:https://imageslr.github.io/2020/03/06/leetcode-33.html#%E6%80%BB%E7%BB%93今天带来搜索旋转排序数组题的总结,:LeetCode 33 题:搜索旋转排序数组LeetCode 81 题:搜索旋转排序数组-iiLeetCode 153 题:寻找旋转排序数组中的最小值LeetCode 154 题:寻找旋转排序数组中的最小值-ii这几道题可以分为三类:33和81题属于搜索特定值,153和154题属于搜索最小值,81和
原创
发布博客 2020.11.17 ·
333 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Caught RuntimeError in replica 0 on device 0(为什么pytorch多卡跑会报错)

为什么我们多卡运行pytorch的时候会报错呢?如果你找遍了全网都没找到解决方法,那不妨看看本文:a = torch.nn.Parameter(torch.zeros(dims, 1).type(torch.FloatTensor), requires_grad=True) a = torch.autograd.Variable(torch.zeros(dims, 1).type(torch.FloatTensor), requires_grad=True)Variable和P
原创
发布博客 2020.11.05 ·
11888 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

推荐系统FM(因子分解机)详细推导

1. 基本概念常见的线性表达式如下:y=ω0+∑i=1nωixiy=\omega_0 + \sum^{n}_{i=1}\omega_ix_iy=ω0​+i=1∑n​ωi​xi​其中ω0\omega_0ω0​为初始权值,或者理解为偏置项,ωi\omega_iωi​为每个特征xix_ixi​对应的权值。可以看到,这种线性表达式只描述了每个特征与输出的关系。FM的表达式如下,可观察到,只是在线性表达式后面加入了新的交叉项特征及对应的权值。y=ω0+∑i=1nωixi+∑i=1n−1∑j=i+1nωijxi
原创
发布博客 2020.11.03 ·
700 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

逻辑回归为什么要用sigmoid函数

这个问题我们要从普通线性模型与广义线性模型开始讲起,看官不要着急,慢慢的往下看。普通线性模型与广义线性模型普通线性模型是用模型的预测值去逼近真实标记y:Y=ω1x1+ω2x2+ω3x3+ω4x4+...+ωpxp+bY = \omega_{1}x_1 + \omega_{2}x_2 + \omega_{3}x_3 + \omega_{4}x_4 +... + \omega_{p}x_{p}+bY=ω1​x1​+ω2​x2​+ω3​x3​+ω4​x4​+...+ωp​xp​+bY=ωTx+bY = \
原创
发布博客 2020.09.28 ·
1416 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

pytorch中的kl散度,为什么kl散度是负数?

F.kl_div()或者nn.KLDivLoss()是pytroch中计算kl散度的函数,它的用法有很多需要注意的细节。输入第一个参数传入的是一个对数概率矩阵,第二个参数传入的是概率矩阵。并且因为kl散度具有不对称性,存在一个指导和被指导的关系,因此这连个矩阵输入的顺序需要确定一下。如果现在想用Y指导X,第一个参数要传X,第二个要传Y。就是被指导的放在前面,然后求相应的概率和对数概率就可以了。所以,一随机初始化一个tensor为例,对于第一个输入,我们需要先对这个tensor进行softmax(确保各
原创
发布博客 2020.09.27 ·
12285 阅读 ·
11 点赞 ·
8 评论 ·
23 收藏

微信PK抖音,谁能赢?

腾讯是中国top2的互联网公司,前几个月腾讯股票大涨,CEO马化腾也是顺势坐上了中国首富的位置(当然现在易主了),但是腾讯这两年也受到了非常大的挑战,他最大的对手就是:字节跳动!字节跳动是什么公司?你平时刷的抖音,就是字节跳动的产品。你们可能会有疑问,微信和抖音完全没有关系啊,为什么两个公司会有竞争呢?你们知道这两个公司竞争的是什么吗?是你的时间。用户的时间就那么多,随着抖音的崛起,日活甚至突破了6亿,用户花在微信qq等社交平台的时间越来越少,大量的时间被抖音所吸引,与此同时,带来的后果是微信qq的广
原创
发布博客 2020.09.23 ·
1750 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

开发岗和算法岗该如何选择

如何看待2019年算法岗一片红海如何看待2020年算法岗诸神黄昏如何看待2021年算法岗灰飞烟灭诸如此类的标题,相信大家在知乎都看到过。小猿的粉丝大部分是面临找工作的同学和面临方向选择的同学,所以一直有很多同学问小猿同一个问题:我该选择算法岗还是开发岗呢这本来不应该是一个问题,一个标准的答案就是你喜欢什么就做什么。但是,因为这样那样的问题,很动人开始动摇、犹豫、难以抉择,我们把大家纠结的原因总结了一下,一条一条为大家分析:我喜欢算法,但是算法竞争太大了,我想转开发我读研了,感觉不做算法亏了
原创
发布博客 2020.09.22 ·
12243 阅读 ·
14 点赞 ·
1 评论 ·
42 收藏

如何用裸机从零开始配置深度学习环境

安装显卡驱动没有安装显卡驱动时,nvidia-smi命令失败关闭linux的桌面模式sudo service lightdm stopinit 3打开非图形化界面进行安装到https://www.nvidia.cn/Download/index.aspx?lang=cn下载合适的显卡驱动,我们这下载的是NVIDIA-Linux-x86_64-450.66.run给文件加可执行权限chmod +x NVIDIA-Linux-x86_64-450.66.run安装即可sudo./NVIDIA-Li
原创
发布博客 2020.09.22 ·
293 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

在官网找不到pytorch的包怎么办?

相信各位读者平时在跑实验的时候肯定会遇到这样的问题,这篇论文写的很好,github也有相应的代码,但是其中用到的包我总是找不到合适的版本怎么办?这里,小猿以pytorch为例来向大家介绍一下解决这个问题的方法。现在学术界编写深度学习实验的时候,越来越喜欢使用pytorch,但是pytorch更新很快,在官网往往只有最新版本,我们常常找不到论文中用的版本,怎么办呢?找到一个离线下载pytorch安装包的网址,https://anaconda.org/pytorch/pytorch/files.
原创
发布博客 2020.09.02 ·
624 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Aanconda在win和linux下的常用命令

winanaconda创建环境conda create -n env_name python=3.6anaconda删除环境conda remove -n env_name --allanaconda激活环境source activate env_name(conda4的是:conda activate env_name)anaconda退出环境source deactivate(conda4的是:conda deactivate)linuxanaconda创建环境conda cr
原创
发布博客 2020.09.02 ·
198 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

什么是汉明重量

191. 位1的个数 【简单题】【位运算】编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量)。输入:00000000000000000000000000001011输出:3解释:输入的二进制串 00000000000000000000000000001011 中,共有三位为 '1'。输入:00000000000000000000000010000000输出:1解释:输入的二进制串 0000000000000000000000001000.
原创
发布博客 2020.09.02 ·
2616 阅读 ·
2 点赞 ·
2 评论 ·
1 收藏

每周论文速递之1——不讲究顺序的序列推荐

今天带来的两篇论文是关于Sequential/Session推荐的,2015年的神作《GRU4REC:Session-based Recommendations with Recurrent Neural Networks》开启了基于用户历史行为的序列化建模的热潮,将用户历史行为通过RNN进行建模。但是这种自左向右的序列推荐算法限制了用户历史信息的发挥,RNN有顺序的,而这种顺序性的假设,对于实际生活中的用户行为并不适用。举个例子,我们今天可能会买笔记本电脑、耳机、机械键盘,但这三样东西的购买顺序完全可以
原创
发布博客 2020.09.01 ·
344 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

两百天两百题大挑战之1——岛屿数量

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ru5RQP5U-1598504889842)(https://imgkr2.cn-bj.ufileos.com/ce31ca72-fdfd-4a64-bc9e-4630961c2eea.png?UCloudPublicKey=TOKEN_8d8b72be-579a-4e83-bfd0-5f6ce1546f13&Signature=C0dLRkKxLBZXVWZRkaL1RmT315c%253D&Expires=1
原创
发布博客 2020.08.29 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

人工智能领域书籍推荐

35本人工智能领域书籍大放送!今天,算法岗从零到无穷精选35本深度学习、机器学习、自然语言处理、算法领域的经典电子书,我们将一次性统统分享给大家!只有两天,手慢无!如何获取?微信识别下方二维码关注,回复电子书福利,即可下载。书籍清单关于我们:算法岗从零到无穷专注于算法岗的就业指导。我们的公众号主推以下几个模块:高频面试算法题与经典算法题详解不定期内推信息(保证是经过筛选的高质量内推信息)各大互联网公司的真实面经offer收割机的个人的面试心得分享专业知识点讲解
原创
发布博客 2020.05.31 ·
1045 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多