如何入门推荐系统
前言推荐系统是一个很工程的领域,相比NLP,CV等理论性较强的AI方向入门难度要低一点。推荐的工作大体可以分为召回和排序,首先从数以万计的items中召回用户可能感兴趣的百万级的items,这里的数量级按照items的数量级来决定,items有可能是音乐(网易云音乐)、电影书籍(豆瓣),商品(淘宝京东)等等;然后从对筛选过一遍的items做排序。当然其实再往细说还有精排粗排等流程,这里作为知识普及就不细说了。召回主要通过多路召回,比如MostPoP(选出平台最受用户喜爱商品top10,推荐给每一个用户)





