当前,许多人对BI工具的认知仍停留在表面,认为它仅仅是生成报表或进行数据可视化的软件而已。而对于企业而言,这种认知局限性会限制其充分利用BI工具的潜在能力,进而影响企业数据驱动决策的效率和效果。
那么,商业智能(Business Intelligence,简称:BI)工具究竟是什么?
它远不止于简单的数据展示工具,而是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确的提供报表并提出决策依据,帮助企业做出明智的业务经营决策。
BI工具在数据架构中处于前端分析的位置,其核心作用是对获取数据的多维度分析、数据的切片、数据的上钻和下钻、cube等。当前,自助式 BI 的出现提供了更多更便捷的可视化交互操作界面,通过数据拖拉拽的方式,自动合并计算,业务人员无须写代码就能够进行分析操作,让越来越多的业务人员也成为了业务数据的分析师。
文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!
一、企业为什么需要BI工具?
1、大数据分析驱动业务增长,企业面临四大困境
- 业务发展的瓶颈
人员决策主观臆断:业务发展决策时缺少充分的数据支撑;
企业数据无法高效应用:数据堆积在各个业务系统中未经整合,蒙尘未发挥价值,手工分析的成本高昂。
改进缺乏针对性:由于大多分析人员习惯了被动分析,改进维度依赖现有推送的分析结果,分析维度的匮乏导致做出的业务改进缺乏针对性,业务发展事倍功半;
最终,业务的问题仅仅停留在表层,只能提出问题,无法深入分析并实现解决的闭环,治标不治本现象凸显。
- 分析人员工作的瓶颈
分析工作重复单一,分析需求响应缓慢,二手分析无法满足自身需求。
- IT 信息人员工作的瓶颈
需求需要反复沟通和修改,无法覆盖业务所有需求,数据工作缺乏认可,数据和实际经营业务存在距离。
2、自助式BI成主要趋势
基于以上困境,越来越多的企业采购开始偏好现代的、以业务用户为中心的自服务数据分析平台。传统的以 IT 为主导的,高度集中化的工具正面临替换。自助式 BI 提供更多更便捷的可视化的交互操作界面,通过数据拖拉拽的方式,自动合并计算,业务人员无须写代码就能够进行分析操作。
二、自助式BI工具推荐
今天给大家推荐一款自助式BI工具FineBI 。作为新一代自助大数据分析的 BI 工具,FineBI为企业提供多源数据采集,自服务数据准备,自助探索式分析,多屏解决方案以及企业级管控等一站式企业商业智能解决方案。使用一段时间后,有以下的明显感受。
1、步骤化,傻瓜式处理数据,业务人员易上手
业务人员对于数据处理的需求非常多变,并且经常需要对不同的业务数据,根据相同的维度进行关联分析。而IT部门对数据提供的基本处理和关联关系并不能完全覆盖分析人员的基本/临时数据需求。
而在FineBI中,用户只需要进行简单的拖拽操作,选择自己需要分析的字段,几秒内就可以看到自己的数据,通过层级的收起和展开,下钻上卷,可以迅速的了解数据的汇总情况。通过重点打造的自助数据集,它还提供了新增列,分组统计,过滤排序等功能,让用户很快上手,将数据处理成自己需要的结果,也让IT更专注于基础数据的准备,把对数据的分析处理交给更熟悉业务的业务人员。
2、可让业务人员通过可视化分析,快速了解自己当前的业务数据情况
FineBI 的可视化探索分析,是面向分析用户,让他们能够以最直观快速的方式,了解自己的数据,发现数据问题的模块。用户只需要进行简单的拖拽操作,选择自己需要分析的字段,几秒内就可以看到自己的数据,通过层级的收起和展开,下钻上卷,可以迅速的了解数据的汇总情况。
同时 FineBI 提供的强大可视化效果,可以让用户的数据以更生动更有冲击力的方式展示出来。此外,还能根据用户选择的数据,自动推荐可视化效果,让数据分析处理更高效。
3、支持PC、移动端,可以随时随地查看数据,并支持与钉钉、企微集成
FineBI 的移动端采用原生渲染技术,完美支持 IOS、android 终端设备,在功能层面,FineBI 移动设置做到了和 PC 端一致,支持自由切换数据的分析维度、指标、方式以及过滤条件,支持钻取、联动,也支持数据的注释标记、分享、推送提醒等功能,用户可以随时随地对自己关心的数据了如指掌。同时,FineBI的移动端报表也支持 HTML5 解析,使其可以在移动端浏览器直接通过地址访问,并因其 H5 解析的特性,支持与阿里钉钉集成,与企业微信集成。
4、性能好,能支持企业的大数据量处理
无性能,不数据。无论是大数据还是小数据,都必须有高性能做支撑。FineBI在产品的稳定、并发数及超大数据量处理上,都有着绝佳的表现,这都归功于 FineBI 所采纳的性能处理方案。
FineBI 的 Spider 计算引擎,可以预先抽取数据进行离线计算,来支撑快速灵活的前端分析。FineBI的直连引擎,让 FineBI 可以实时展现数据库或数仓中的数据变化,来支撑高时效性的可视化分析。
5、有完善的数据管理功能,能帮企业解决数据孤岛问题
伴随着企业信息化程度的提高,为了解决特定信息化问题与需求,企业中的信息系统数量也越来越多,ERP,CRM,OA 甚至专业的财务软件等。而企业又经常需要对这些独立系统进行统一的数据分析,随着系统数据来源的增多,每次整合调用数据就会耗费大量的时间精力。FineBI能做到从数据采集→数据处理→数据的存储和管理,为业务人员自由探索数据分析提供了强大的数据支持。
6、通过FineBI,建立起以 IT 为中心的企业级数据管控平台
FineBI提供了以IT 为中心的企业级管控方案,IT中心可以在FineBI平台进行报表管理、用户管理、机构管理、权限管理等,进而支撑起“一个平台”的信息化管理方式。IT 中心可以根据业务需要分配 BI 仪表板的查看权限,BI 用户的编辑权限,以及不同业务部门 BI 用户对应的数据权限,实现基于用户角色的精确权限管理。让用户在有序的管控下,能够自由地针对权限范围内的数据进行BI 分析以及数据洞察。既能够有效分流信息中心的压力,又能够满足业务部门即时的数据分析需求。
三、FineBI各行业数据分析模型及看板Demo展示
- 业务场景应用-经营分析之三大指标监控看板
经营分析之三大指标监控看板是用于实时追踪和展示企业运营中关键业绩指标(如营业收入、利润)的可视化工具。
- 业务场景应用-销售业绩达成情况
营销组织销售分析看板用于分析统计营销线人员的目标完成情况,便于后期并给出建议。
- 业务场景应用-员工流失率分析报告
根据人资部门提供的近十年公司员工信息表,从司龄、员工满意度、绩效、完成项目数、平均工时、是否晋升等方面对员工流失率进行分析。
- 经典分析模型-RFM客户分析模型
RFM 分析通过最近一次消费时间(R)、最近一段时间内消费频次(F)、最近一段时间内消费金额(M)三个关键指标对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。
- 经典分析模型-用户留存分析
通过计算用户从激活某产品开始,在当日、一周内、两周内、三周内进行登录使用等操作的占总登录人数的比率,来考察产品对用户的吸引力。
四、总结
总的来说,FineBI能够在很大程度为业务人员针对性分析数据提供便利,让他们能够从数据中发现问题和痛点,及时优化业务方向。这种便利无疑对企业的贡献巨大,上了FineBI之后,业务人员也能基于业务基于指标去做特定主题的数据分析,进而为公司经营出谋划策,这样一来,全员都能用好数据,企业经营业绩必定蒸蒸日上。
文章中提到的BI数据分析工具分享给大家——
https://s.fanruan.com/7lh3w
零基础快速上手,内置多种数据分析模板模型,实现高效数据自助分析!