Python爬虫定时增量更新数据

?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

用户体验的工作可以说是用户需求和用户认知的分析。而消费者的声音是其中很重要的一环,它包含了用户对产品的评论,不管是好的坏的,都将对我们产品的改进和迭代有帮助。另外任何事情都要考虑金钱成本和人力成本,因此我希望能通过机器学习的算法来辅助分析,对用户的评论数据进行提炼和洞察。

一、数据获取和清洗

现在爬虫泛滥,网络公开数据的获取并不再是一个难题。简单点可以利用一些互联网的爬虫服务(如神箭手、八爪鱼等),复杂点也可以自己写爬虫。这里我们用爬虫来获取京东的评论数据。相对于亚马逊而言,京东比较坑。第一个坑是京东的反爬虫还不错,通过正常产品网址进去的那个评论列表是几乎爬不出数据来的,所有大部分网络爬虫服务都止步于此。第二个坑是一款产品的评论数只要超过一万条,那么京东就只会显示前一千条,没有公开的数据,那你爬虫技术再厉害也没办法,除非开着爬虫定时增量更新数据。

自己写爬虫的好处就是可以避免掉进第一个坑,但是第二个坑没办法。这里我爬取了 小米MIX 和 小米MIX2 的评论数据(最新的几款手机我都爬取了,需要的请戳后台),其中 小米MIX 共1578条,小米MIX2 共3292条。

本文通过分析这些数据预期完成如下几个目标

1、数据清洗后的好评率

2、好/中/差评的概览

3、典型意见分析

首先来看看MIX2的大致情况:

?wx_fmt=jpeg

?wx_fmt=png

一共有3497条评论,其中有些评论内容还是完全相同的。用户大概在购买9天后后评论(可能与到货日期有关),平均打分为4.87分,评论里面有些完全相同的,小米MIX2只有一种颜色等等。

接下来我们先做第一件事情

?wx_fmt=jpeg

京东采用的是5分制,其中4-5分为好评,2-4分为中评,1分为差评。MIX2的好评率为96.63%,与京东官网的一致。

粗略的浏览以下评论,我们发现有这么几种无效评论。

第一种全是标点符号或者就一两个字:

?wx_fmt=png

这种情况可以利用正则表达式来去除,第二种比较麻烦,如:

?wx_fmt=jpeg

这种评论中它纯属凑字数和灌水,不含任何产品的特征。一种想法是看看评论中涉及的名词是否是手机领域中的词语,但是实际情况会非常复杂,比如

“用的很不错”、“太差了”...

它并没有主语,并不知道它评价的是啥。这里我们反过来,假设每一类无效评论都有类似的关键词,一个评论中的词语只要有一些垃圾评论关键词,我们就把它判定为无效评论。当然并也不需要给定所有的无效评论词,利用tfidf可以通过一个词语顺藤摸瓜找到其他类似的词语。(还可以利用文本相似性算法寻找)

?wx_fmt=jpeg

另外还有一种情况,虽然不属于无效评论,但是影响好评占比。

?wx_fmt=png

这种情况在追评中出现的较多,还有就是京东默认的好评。虽然内容是差评,但是标记的分值是5分。理论上也可以通过算法找出大部分。在NLP领域中,有一个课题叫做情感分析(sentiment analysis), 它可以判断一句话的情感方向是正面的还是负面的(以概率大小给出,数值在0-1之间)。如果一段评论的情感方向与对应的评分差异过大,则我们有理由相信它的评分是有误的。当然这里有一个条件,那就是这个情感分析算法是非常准确的。

有大神专门用电商评论训练了一个开源的情感分析包snownlp, 我们来看看这个包效果怎样。

?wx_fmt=jpeg

嗯嗯,准确率为92.63%,看上去很高,但。。。因为我把所有评论都判定为好评,那正确率也有96.54%。再看上图中的ROC曲线,嗯,惨不忍睹。曲线跟x轴之间的面积(记作AUC)越大,说明模型的判别能力越好。一般情况曲线会在对角线之上(对角线相当于随机预测的结果),可以此时AUC=0.157,比随机结果差多啦。

更好的情感分析估计需要利用大量手机领域的语料重新训练才行,本文就暂不讨论这个啦。

二、好/中/差评的语义理解

语义理解是一个非常难的课题,本文不追求绝对精准,仅希望能对产品的评论有一个快速的理解。本文将从三个方面来阐述同类型评论语料的语义:

1、词云。它会统计一段文本中各个词语出现的次数(频数),频数越大,在词云中对应的字体也越大。通过观察词云,可以知道一段文本主要在讲哪些东西

2、TextRank。 TextRank 算法是一种用于文本的基于图的排序算法,可以给出一段文本的关键词。其基本思想来源于谷歌的PageRank算法, 通过把文本分割成若干组成单元(单词、句子)并建立图模型, 利用投票机制对文本中的重要成分进行排序, 仅利用单篇文档本身的信息即可实现关键词提取、文摘。和 LDA、HMM 等模型不同, TextRank不需要事先对多篇文档进行学习训练, 因其简洁有效而得到广泛应用。

3、主题分解。 假设每一段文本都是有主题的,比如新闻里的体育类、时事类、八卦类等。通过对一系列的语料库进行主题分解(本文采用的是LDA),可以了解语料库涉及了哪些主题。(本文用的LDA实际效果不怎么好,暂且仅供娱乐。更好的方法后续或许会更新)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页