1018 锤子剪刀布 (20分)

在这里插入图片描述

输入样例:

10
C J
J B
C B
B B
B C
C C
C B
J B
B C
J J
输出样例:

5 3 2
2 3 5
B B

本题有几个地方需要注意:

  1. 当甲乙没有赢,怎么输出,正确答案是都输出B,这个在题目中找不出线索,有点坑;
  2. 使用python超时,优化考虑的有三点,1⃣️使用sys.stdin作为输入,尤其是在大量输入数据时;2⃣️以空间换时间,使用一维或者多维list建立索引;3⃣️将执行代码放到函数中,至于为什么这样可以提高效率,主要基于cpython的机制问题,大概是因为局部变量和全局变量存取效率不一样;
  3. pta中python超市一般出现在用for循环输入大量数据时,可以考虑上面的优化策略;
  4. pta这种在线题目的三板斧是:1⃣️把题目需要的输入输出准确信息准确提炼,映射到合适的数据结构;2⃣️保证样例正确,把主流逻辑调通;3⃣️自己设计一些和0、1相关的边界数据,把边界条件调通,什么数组越界、函参不匹配大概都在这一步;4⃣️提交测试,根据返回信息再次调试,如果是错误问题那就需要检查主逻辑和边界条件,如果超时就使用上面的优化策略。
# -*- coding: utf-8 -*-
from collections import defaultdict
import sys

stat = {
    'C B': -1,
    'C J': 1,
    'B C': 1,
    'B J': -1,
    'J C': -1,
    'J B': 1,
    'C C': 0,
    'B B': 0,
    'J J': 0}


def comp(x):
    return '' + str(x[1]) + str(ord('z') - ord(x[0]))


if __name__ == '__main__':
    result = defaultdict(int)
    win_stat_0 = defaultdict(int)
    win_stat_1 = defaultdict(int)
    n = eval(sys.stdin.readline().strip())
    for i in range(n):
        input_str = sys.stdin.readline().strip()
        result[stat[input_str]] += 1
        if stat[input_str] == 1:
            win_stat_0[input_str[0]] += 1
        elif stat[input_str] == -1:
            win_stat_1[input_str[2]] += 1
    print(result[1], result[0], result[-1])
    print(result[-1], result[0], result[1])
    if len(win_stat_0) > 0:
        print(sorted(win_stat_0.items(), key=comp, reverse=True)[0][0], end='')
    else:
        print('B', end='')
    print(' ', end='')
    if len(win_stat_1) > 0:
        print(sorted(win_stat_1.items(), key=comp, reverse=True)[0][0])
    else:
        print('B')




### C++ 实现锤子剪刀游戏 为了实现锤子剪刀的游戏逻辑并统计双方的胜、平、负次数以及各自胜利次数最多的手势,可以按照如下方式编写代码: #### 代码结构说明 程序首先读取输入数据,包括交锋次数 `N` 和每次交锋的具体手势。接着通过遍历这些记录来判断每一局的结果,并更新相应的计数器。最后输出总的胜负情况及最优策略。 #### 完整代码示例 ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; // 总共要进行n轮比赛 vector<char> a(n), b(n); // 存储两个人的选择 for(int i = 0 ;i < n;i++){ char temp_a, temp_b; cin>>temp_a>>temp_b; a[i]=temp_a;b[i]=temp_b; } int winA=0,tie=0,winB=0,maxWinA=' ',maxWinB=' '; // 统计每种选择出现频率 int freqA[3]={},freqB[3]={}; for(int i = 0 ;i<n;i++) { if(a[i]==b[i]) tie++; else{ if((a[i]=='C'&&b[i]=='J')||(a[i]=='J'&&b[i]=='B')||(a[i]=='B'&&b[i]=='C')) { ++winA; switch (a[i]){ case 'C': freqA[0]++; break; case 'J': freqA[1]++; break; case 'B': freqA[2]++; break; } }else{ ++winB; switch(b[i]){ case 'C': freqB[0]++;break; case 'J': freqB[1]++;break; case 'B': freqB[2]++;break; } } } } cout<<winA<<" "<<tie<<" "<<(n-winA-tie)<<endl<<(n-winA-tie)<<" "<<tie<<" "<<winA<<endl; maxWinA=(freqA[0]>freqA[1]?('C'>(freqA[0]>freqA[2]?'C':'B')?('C'):('B')):(freqA[1]>freqA[2]?'J':'B')); maxWinB=(freqB[0]>freqB[1]?('C'>(freqB[0]>freqB[2]?'C':'B')?('C'):('B')):(freqB[1]>freqB[2]?'J':'B')); cout << maxWinA << " " << maxWinB << endl; } ``` 此段代码实现了完整的“锤子剪刀”游戏逻辑处理流程[^3]。该算法能够有效地解析输入的数据流,并计算出所需的统计数据和最佳策略选项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值