win10 + anaconda3 +tensorflow

2018-03-12 09:14:42

阅读数 57

评论数 0

python nonzero

nonzero(a)返回数组a中值不为零的元素的下标,它的返回值是一个长度为a.ndim(数组a的轴数)的元组,元组的每个元素都是一个整数数组,其值为非零元素的下标在对应轴上的值。例如对于一维布尔数组b1,nonzero(b1)所得到的是一个长度为1的元组,它表示b1[0]和b1[2]的值不为0(...

2017-04-30 10:37:55

阅读数 285

评论数 0

关于Python中的yield

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Python中的任何类型,包括列表、元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器 迭代...

2017-04-22 09:55:46

阅读数 176

评论数 0

Python的sys.stdout、sys.stdin重定向

sys.stdout 与 print 当我们在 Python 中打印对象调用 print obj 时候,事实上是调用了 sys.stdout.write(obj+'\n') print 将你需要的内容打印到了控制台,然后追加了一个换行符 print 会调用 sys.std...

2017-04-22 09:42:27

阅读数 567

评论数 0

python numpy中nonzero()的用法

当使用布尔数组直接作为下标对象或者元组下标对象中有布尔数组时,都相当于用nonzero()将布尔数组转换成一组整数数组,然后使用整数数组进行下标运算。 nonzeros(a)返回数组a中值不为零的元素的下标,它的返回值是一个长度为a.ndim(数组a的轴数)的元组,元组的每个元素都是一个整数数组...

2017-04-21 16:25:23

阅读数 207

评论数 0

Softmax公式推导

直接给出了梯度更新公式,但是没有给出公式推导。这里对公式推导进行简单的补充说明。

2017-04-15 09:33:57

阅读数 640

评论数 0

KNN

缺点: 耗内存,存储所有训练样本,对每个测试样本都要计算和所有训练数据的距离,时间成本高 代码如下: from numpy import * import os def loaddata():     data=array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2]...

2017-04-14 15:56:09

阅读数 171

评论数 0

python xrange和range的使用区别

range  函数说明:range([start,] stop[, step]),根据start与stop指定的范围以及step设定的步长,生成一个列表。  eg: >>> range(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>>...

2017-04-13 21:00:55

阅读数 203

评论数 0

Python-Numpy的tile函数用法

>>> tile(1,2) array([1, 1])   >>> tile((1,2,3),3) array([1, 2, 3, 1, 2, 3, 1, 2, 3])   >>> tile(a,2) array...

2017-04-13 20:40:08

阅读数 220

评论数 0

Beta函数与Gamma函数及其与Beta分布的关系

相关函数在scipy.special import scipy.special as ss ss.beta(x1, x2)1212 相关分布(概率密度)在scipy.stats import scipy.stats as st ss.beta(a, b) # 随机变量...

2017-04-12 15:12:14

阅读数 570

评论数 0

MCMC(Markov Chain Monte Carlo)的理解与实践(Python)

理解MCMC及一系列改进采样算法的关键在于对马尔科夫随机过程的理解。更多详尽的讨论请参见 重温马尔科夫随机过程。 对于给定的概率分布 π(x),我们希望能有便捷的方式生成它(π(x))对应的样本。由于马氏链能收敛到平稳分布,于是一个很nice的想法(by Metropolis, 1953...

2017-04-12 15:09:21

阅读数 2224

评论数 0

机器学习算法的调试 —— 梯度检验(Gradient Checking)

反向传播算法很难调试得到正确结果,尤其是当实现程序存在很多难于发现的bug 时。举例来说,索引的缺位错误(off-by-one error)会导致只有部分层的权重得到训练(for(i=1; i 被漏写为 for(i=1; i),再比如忘记计算偏置项。这些错误会使你得到一个看似十分合理的结果(但...

2017-04-12 10:17:40

阅读数 302

评论数 0

机器学习算法——SVD奇异值分解

一、SVD奇异值分解的定义     假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵。这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵。 二、SVD奇异值分解与特征值分解的关系     特征值分...

2017-04-11 19:12:30

阅读数 192

评论数 0

numpy 中的ndarray数组返回符合特定条件的索引方法

在numpy的ndarray类型中,似乎没有直接返回特定索引的方法,我只找到了where函数,但是where函数对于寻找某个特定值对应的索引很有用,对于返回一定区间内值的索引不是很有效,至少我没有弄明白应该如何操作。下面先说一下where函数的用法吧。 (1)where函数的使用场景: 例如现...

2017-04-10 16:36:29

阅读数 1371

评论数 0

numpy 基础 —— np.linalg

(1)np.linalg.inv():矩阵求逆(2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra,norm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):...

2017-04-09 17:09:39

阅读数 2184

评论数 1

TypeError: 'module' object is not callable 原因分析

程序代码  class Person:      #constructor      def __init__(self,name,sex):           self.Name = name           self.Sex = sex      def ToString(s...

2017-04-09 16:21:02

阅读数 370

评论数 0

牛顿法

牛顿法相比梯度下降法速度更快,每次更新使损失以二次方的速度减少,因此称二次迭代,其原理如下: 牛顿法至少有两个应用方向,1、求方程的根,2、最优化。牛顿法涉及到方程求导,下面的讨论均是在连续可微的前提下讨论。  1、求解方程。 并不是所有的方程都有求根公式,或者求根公式很复杂,导...

2017-04-03 15:18:43

阅读数 317

评论数 0

局部加权平均-线性回归

定义: 给定我们要预测的样本的特征,求该样本与训练样本集之间的距离作为相应训练样本权重,然后模型训练和线性回归一样 特点: 这样我们可以用局部线性函数近似非线性函数, 但是,每个预测样本都要训练一个模型,时间复杂度较高

2017-04-03 11:39:26

阅读数 287

评论数 0

梯度下降与随机梯度下降

梯度下降: 假设 y=f(x) 导数:dy>0 ,则随x增加y值变大,dy 当我们最小化目标函数时,参数x用下式更新,alpha为常数 x := x-alpha*dy 当 dy>0 时 ,则随x增加y值变大,上式x值减小,则y值也减小 当 dy 同理,当我们最大化目标函数时,参数x用...

2017-04-02 17:13:46

阅读数 277

评论数 0

python 多线程

多线程和多进程是什么自行google补脑   对于python 多线程的理解,我花了很长时间,搜索的大部份文章都不够通俗易懂。所以,这里力图用简单的例子,让你对多线程有个初步的认识。   单线程     在好些年前的MS-DOS时代,操作系统处理问题都是单任务的,我想...

2017-04-01 18:37:38

阅读数 147

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭