最小生成树-Prim算法和Kruskal算法

假设以下情景,有一块木板,板上钉上了一些钉子,这些钉子可以由一些细绳连接起来。假设每个钉子可以通过一根或者多根细绳连接起来,那么一定存在这样的情况,即用最少的细绳把所有钉子连接起来。
更为实际的情景是这样的情况,在某地分布着N个村庄,现在需要在N个村庄之间修路,每个村庄之前的距离不同,问怎么修最短的路,将各个村庄连接起来。
以上这些问题都可以归纳为最小生成树问题,用正式的表述方法描述为:给定一个无方向的带权图G=(V, E),最小生成树为集合TT是以最小代价连接V中所有顶点所用边E的最小集合。 集合T中的边能够形成一颗树,这是因为每个节点(除了根节点)都能向上找到它的一个父节点。

解决最小生成树问题已经有前人开道,Prime算法和Kruskal算法,分别从点和边下手解决了该问题。

Prim算法

Prim算法是一种产生最小生成树的算法。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。

Prim算法从任意一个顶点开始,每次选择一个与当前顶点集最近的一个顶点,并将两顶点之间的边加入到树中。Prim算法在找当前最近顶点时使用到了贪婪算法。

算法描述:
1. 在一个加权连通图中,顶点集合V,边集合为E
2. 任意选出一个点作为初始顶点,标记为visit,计算所有与之相连接的点的距离,选择距离最短的,标记visit.
3. 重复以下操作,直到所有点都被标记为visit
在剩下的点钟,计算与已标记visit点距离最小的点,标记visit,证明加入了最小生成树。

下面我们来看一个最小生成树生成的过程:
1 起初,从顶点a开始生成最小生成树
这里写图片描述
2 选择顶点a后,顶点啊置成visit(涂黑),计算周围与它连接的点的距离:
这里写图片描述
3 与之相连的点距离分别为7,6,4,选择C点距离最短,涂黑C,同时将这条边高亮加入最小生成树:
这里写图片描述
4 计算与a,c相连的点的距离(已经涂黑的点不计算),因为与a相连的已经计算过了,只需要计算与c相连的点,如果一个点与a,c都相连,那么它与a的距离之前已经计算过了,如果它与c的距离更近,则更新距离值,这里计算的是未涂黑的点距离涂黑的点的最近距离,很明显,ba7bc的距离为6,更新b和已访问的点集距离为6,而f,ec的距离分别是8,9,所以还是涂黑b,高亮边bc
这里写图片描述
5 接下来很明显,d距离b最短,将d涂黑,bd高亮:
这里写图片描述
f距离d7,距离b4,更新它的最短距离值是4,所以涂黑f,高亮bf
这里写图片描述
7 最后只有e了:
这里写图片描述

针对如上的图,代码实例如下:


#include<iostream>
#define INF 10000
using namespace std;
constint N = 6;
bool visit[N];
intdist[N] = { 0, };
intgraph[N][N] = { {INF,7,4,INF,INF,INF},  //INF代表两点之间不可达
                    {7,INF,6,2,INF,4},
                    {4,6,INF,INF,9,8},
                    {INF,2,INF,INF,INF,7},
                    {INF,INF,9,INF,INF,1},
                    {INF,4,8,7,1,INF}
                  };
intprim(intcur)
{
    intindex = cur;
    intsum = 0;
    inti = 0;
    intj = 0;
    cout << index << " ";
    memset(visit,false, sizeof(visit));
    visit[cur] = true;
    for(i = 0; i < N; i++)
        dist[i] = graph[cur][i];//初始化,每个与a邻接的点的距离存入dist
    for(i = 1; i < N; i++)
    {
        intminor = INF;
        for(j = 0; j < N; j++)
        {
            if(!visit[j] && dist[j] < minor)          //找到未访问的点中,距离当前最小生成树距离最小的点
            {
                minor = dist[j];
                index = j;
            }
        }
        visit[index] = true;
        cout << index << " ";
        sum += minor;
        for(j = 0; j < N; j++)
        {
            if(!visit[j] && dist[j]>graph[index][j])      //执行更新,如果点距离当前点的距离更近,就更新dist
            {
                dist[j] = graph[index][j];
            }
        }
    }
    cout << endl;
    returnsum;               //返回最小生成树的总路径值
}
intmain()
{
    cout << prim(0) << endl;//从顶点a开始
    return0;
}




Kruskal算法

Kruskal是另一个计算最小生成树的算法,其算法原理如下。首先,将每个顶点放入其自身的数据集合中。然后,按照权值的升序来选择边。当选择每条边时,判断定义边的顶点是否在不同的数据集中。如果是,将此边插入最小生成树的集合中,同时,将集合中包含每个顶点的联合体取出,如果不是,就移动到下一条边。重复这个过程直到所有的边都探查过。

下面还是用一组图示来表现算法的过程:
1 初始情况,一个联通图,定义针对边的数据结构,包括起点,终点,边长度:


typedef struct _node{

    intval;   //长度

    intstart; //边的起点

    intend;   //边的终点

}Node;

3 继续找到第二短的边,将cd再放入同一个集合里:

4 继续找,找到第三短的边ab,因为a,e已经在一个集合里,再将b加入:

5 继续找,找到b,e,因为b,e已经同属于一个集合,连起来的话就形成环了,所以边be不加入最小生成树:

6 再找,找到bc,因为c,d是一个集合的,a,b,e是一个集合,所以再合并这两个集合:

这样所有的点都归到一个集合里,生成了最小生成树。

根据上图实现的代码如下:

#include<iostream>
#define N 7
using namespace std;
typedef struct _node{
    intval;
    intstart;
    intend;
}Node;
Node V[N];
intcmp(constvoid *a, constvoid *b)
{
    return(*(Node *)a).val - (*(Node*)b).val;
}
intedge[N][3] = {  { 0,1,3},
                    {0,4,1}, 
                    {1,2,5}, 
                    {1,4,4},
                    {2,3,2}, 
                    {2,4,6}, 
                    {3,4,7}
                    };
 
intfather[N] = { 0, };
intcap[N] = {0,};
 
voidmake_set()              //初始化集合,让所有的点都各成一个集合,每个集合都只包含自己
{
    for(inti = 0; i < N; i++)
    {
        father[i] = i;
        cap[i] = 1;
    }
}
 
intfind_set(intx)              //判断一个点属于哪个集合,点如果都有着共同的祖先结点,就可以说他们属于一个集合
{
    if(x != father[x])
     {                             
        father[x] = find_set(father[x]);
    }    
    returnfather[x];
}                                 
 
voidUnion(intx, inty)         //将x,y合并到同一个集合
{
    x = find_set(x);
    y = find_set(y);
    if(x == y)
        return;
    if(cap[x] < cap[y])
        father[x] = find_set(y);
    else
    {
        if(cap[x] == cap[y])
            cap[x]++;
        father[y] = find_set(x);
    }
}
 
intKruskal(intn)
{
    intsum = 0;
    make_set();
    for(inti = 0; i < N; i++)//将边的顺序按从小到大取出来
    {
        if(find_set(V[i].start) != find_set(V[i].end))     //如果改变的两个顶点还不在一个集合中,就并到一个集合里,生成树的长度加上这条边的长度
        {
            Union(V[i].start, V[i].end);  //合并两个顶点到一个集合
            sum += V[i].val;
        }
    }
    returnsum;
}
intmain()
{
    for(inti = 0; i < N; i++)   //初始化边的数据,在实际应用中可根据具体情况转换并且读取数据,这边只是测试用例
    {
        V[i].start = edge[i][0];
        V[i].end = edge[i][1];
        V[i].val = edge[i][2];
    }
    qsort(V, N, sizeof(V[0]), cmp);
    cout << Kruskal(0)<<endl;

*****************************************************************************

Prim算法

1.概览

普里姆算法Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点英语Vertex (graph theory),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克英语Vojtěch Jarník发现;并在1957年由美国计算机科学家罗伯特·普里姆英语Robert C. Prim独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

 

2.算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

 

下面对算法的图例描述

图例说明不可选可选已选(Vnew
 

此为原始的加权连通图。每条边一侧的数字代表其权值。---

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。C, GA, B, E, FD
 

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。C, GB, E, FA, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。CB, E, GA, D, F
 

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。C, E, GA, D, F, B
 

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。C, GA, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EGGA, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。A, D, F, B, E, C, G

 

3.简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)<cost(G0)   则在Gmin中存在<u,v>不属于G0

3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证

4.算法代码实现(未检验)

#define MAX  100000
#define VNUM  10+1                                             //这里没有ID为0的点,so id号范围1~10

int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0};                                         //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM];                                             //标记某点是否加入Vnew
int adjecent[VNUM]={0};                                        //记录V中与Vnew最邻近的点


void prim(int start)
{
     int sumweight=0;
     int i,j,k=0;

     for(i=1;i<VNUM;i++)                                      //顶点是从1开始
     {
        lowcost[i]=edge[start][i];
        addvnew[i]=-1;                                         //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外
     }

     addvnew[start]=0;                                        //将起始点start加入Vnew
     adjecent[start]=start;
                                                 
     for(i=1;i<VNUM-1;i++)                                        
     {
        int min=MAX;
        int v=-1;
        for(j=1;j<VNUM;j++)                                      
        {
            if(addvnew[j]!=-1&&lowcost[j]<min)                 //在Vnew之外寻找最短路径
            {
                min=lowcost[j];
                v=j;
            }
        }
        if(v!=-1)
        {
            printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
            addvnew[v]=0;                                      //将v加Vnew中

            sumweight+=lowcost[v];                             //计算路径长度之和
            for(j=1;j<VNUM;j++)
            {
                if(addvnew[j]==-1&&edge[v][j]<lowcost[j])      
                {
                    lowcost[j]=edge[v][j];                     //此时v点加入Vnew 需要更新lowcost
                    adjecent[j]=v;                             
                }
            }
        }
    }
    printf("the minmum weight is %d",sumweight);

5.时间复杂度

这里记顶点数v,边数e

邻接矩阵:O(v2)                 邻接表:O(elog2v)


Kruskal算法

 

1.概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

 

2.算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

                if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中

                                         添加这条边到图Graphnew

 

图例描述:

首先第一步,我们有一张图Graph,有若干点和边 

 

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

 

 

 

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。

最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

 

 

 

3.简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。

我们证明T'+{<u,v>}是G的最小生成树。

用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。


4.代码算法实现

typedef struct          
{        
    char vertex[VertexNum];                                //顶点表         
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
    int n,e;                                               //图中当前的顶点数和边数         
}MGraph; 
 
typedef struct node  
{  
    int u;                                                 //边的起始顶点   
    int v;                                                 //边的终止顶点   
    int w;                                                 //边的权值   
}Edge; 

void kruskal(MGraph G)  
{  
    int i,j,u1,v1,sn1,sn2,k;  
    int vset[VertexNum];                                    //辅助数组,判定两个顶点是否连通   
    int E[EdgeNum];                                         //存放所有的边   
    k=0;                                                    //E数组的下标从0开始   
    for (i=0;i<G.n;i++)  
    {  
        for (j=0;j<G.n;j++)  
        {  
            if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)  
            {  
                E[k].u=i;  
                E[k].v=j;  
                E[k].w=G.edges[i][j];  
                k++;  
            }  
        }  
    }     
    heapsort(E,k,sizeof(E[0]));                            //堆排序,按权值从小到大排列       
    for (i=0;i<G.n;i++)                                    //初始化辅助数组   
    {  
        vset[i]=i;  
    }  
    k=1;                                                   //生成的边数,最后要刚好为总边数   
    j=0;                                                   //E中的下标   
    while (k<G.n)  
    {   
        sn1=vset[E[j].u];  
        sn2=vset[E[j].v];                                  //得到两顶点属于的集合编号   
        if (sn1!=sn2)                                      //不在同一集合编号内的话,把边加入最小生成树   
        {
            printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);       
            k++;  
            for (i=0;i<G.n;i++)  
            {  
                if (vset[i]==sn2)  
                {  
                    vset[i]=sn1;  
                }  
            }             
        }  
        j++;  
    }  
}


时间复杂度:elog2e  e为图中的边数



原文:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值