分析:在线直播与录播的区别? 最近在知乎网站看到一个对于录播教育和直播教育最核心区别的话题,看了问题我就有几个疑问:1.录播课程坚持学习的人很不多?2.直播课程存在互动使得课程完成度高?这两个结论是怎么出来的?有没有实际例子? 我个人觉得(当然是根据自己多年的经验,不是凭空感觉的),通过这几年的观察,我认为在线教育能不能做好并不取决于是选择了直播还是录播业务,而是符合你的产品,你的产品人群;现在很多的在线教育平台都是录
那些容易被忽略的Python编程方式 The Zen of Python, by Tim Peters Beautiful is better than ugly. 优美胜于丑陋(Python以编写优美的代码为目标) Explicit is better than implicit. 明了胜于晦涩(优美的代码应当是明了的,命名规范,风格相似) Simple is better than complex. 简洁胜于复杂(优美的
高可用、开源的Redis缓存集群方案 由于单台Redis服务器的内存管理能力有限,使用过大内存的Redis又会使得服务器的性能急剧下降,一旦服务器发生故障将会影响更大范围业务,而Redis 3.0 beta1支持的集群功能还不适合生产环境的使用。于是为了获取更好的Redis缓存性能及可用性,很多公司都研发了Redis缓存集群方案。现对NetFlix、Twitter、国内的豌豆荚在缓存集群方面的解决方案进行一个汇总,以供读者参考,具体内
现代Web开发需要学习的15大技术 将近4年前,我写了一篇名为《Future of Web and Mobile: HTML5, CSS3 and Javascript》的博客文章,其中我提到了Javascript的出现,以及JavaScript框架,例如jQuery、Knockout等的爆 发。 快进到现在,我发现现代web开发再一次将发生压倒性的改变。信息资讯的铺天盖地令人迷惑,尤其对于初学者而言。首要原因是新的框架,例如
大数据问题之实时流处理系统的用例 本文阐述了为什么比起Hadoop之类的知名技术,类似Apache Storm这样的系统更加有用。 让我们以经典的笔记本品牌实时情感分析(SENTIMENT ANALYSIS)为例,在进行观点分析时,处理流程应当如下图所示: 从类似Twitter、Facebook、电子商务网站之类的不同来源收集数据。 以一些“高吞吐量”这样的关键字为基础,我们筛选出了一些数据。 为不
阿里小Ai之父解析阿里大数据在新兴行业的应用 “今天所有做智能芯片的,都会被迅速扫进历史垃圾堆。为什么?因为真正的智慧在云端。当所有数据汇集在云上,智慧的交融、数据的融合就变得没有成本。当没有成本成为现实时,爆发就不是以前的1+1添砖加瓦,而是像核聚变一样可怕。” 6月8日,中欧EMBA走进阿里,阿里云人工智能首席科学家闵万里进行了题为《大数据创新业务实践》的分享,在演讲中他提到了上述的观点。 尽管演讲主题是《大数据创新业务实践》
Java文件读写 public class ReadFromFile { /** * 以字节为单位读取文件,常用于读二进制文件,如图片、声音、影像等文件。 */ public static void readFileByBytes(String fileName) { File file = new File(fileName); InputStre
大数据行业人士必知10大数据思维原理 大数据思维原理是什么?简单概括为10项原理,当样本数量足够大时,你会发现其实每个人都是一模一样的。 一、数据核心原理 从“流程”核心转变为“数据”核心 大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。Hadoop体系的分布式计算框架已经是“数据”为核心的范式。非结构化数据及分析需求,将改变IT系统的升级方式:从简单增量到架构变化。大数据下的新思维——计算模式的
数据分析入门随笔 数据分析是一个大话题,借这篇小笔记整理一下自己的思路:数据分析是什么?涉及到哪些技术?有哪些数据公司玩家?如何定位数据分析的价值? 前言 数据的一面是银弹(Silver Bullet):无所不能,增长黑客(Growth Hacking),决策分析(Decision Making);数据的另外一面是镜子(Reflection):可以看清楚很多苟且和远方的田野。如何发现利用数据的价值,就是
这几件事带你走出深陷的数据分析迷宫 通过真实世界中的实例,我们将共同通过种种错误的数据分析方式总结出正确的技巧与诀窍。 相信每位朋友都遇到过这样的情况:将来自各类渠道的数据收集起来,通过A/B测试进行验证,希望借此得出分析结论。但在检查结果时,我们发现这些数字似乎并不怎么合理。事实上,数据验证也是我们日常工作中的重要环节,而且与编码一样需要大量追踪与调试。在今天的文章中,我们将共同通过真实世界中的实例,在对种种错误的数据分析方
彼得·蒂尔:别浪费你的无知,去做那些没人做过的事 硅谷风险投资家彼得·蒂尔参加了美国汉密尔顿学院2016届的毕业典礼并作演讲。他与Max Levchin和Elon Musk一道创立了PayPal。 彼得以敢说话、说真话闻名硅谷,他此前表示高等教育对于赢家、输家和社会来说都是不好的,因此汉密尔顿学院最终选择他来作毕业演讲还挺出人意料的。不过,他演讲的主题——拥抱未知、驱动变革——对于毕业典礼这个场合来说非常合适。 谢谢!我很荣幸
大数据从何而来?你必须知道的7个数据源供应平台 我们都知道一句话“巧妇难为无米之炊”,数据源就是数据产生价值中的那些大米。那大数据时代企业需要哪些数据呢?根据我个人理解我觉得可以大致分为以下几类: 1、(内部)企业自身业务生产经营环节产生的内部数据(包括销售、客服、仓储、财务等) 2、(运营)可以理解为企业发展过程中掌握在第三方手中的数据,如企业的广告供应商以及一些传播与媒体数据(新媒体、H5、app等) 3、(外部)包括传统
MySQL高可用之MHA—部署MHA 前提由于MHA不会自动创建主从环境,所以要手动去部署主从环境,也可以在现有主从环境部署MHA。所有slave不要设置为只读,同时也要打开binlog。如果master故障后要切换到指定的slave上,该指定的slave打开binlog,设置可读写,其它不用设置打开binlog或设置只读也可。具体以自身架构为准。部署MySQL主从可参考:配置MySQL主从复制架构
Java知识:(3)Tomcat 1、Tomcat下载和安装 1.1、下载地址 apache官网:www.apache.org 产品的主页:http://jakarta.apache.org Tomcat:http://tomcat.apache.org/ 1.2、版本 安装版:window (exe、msi) linux(rmp) 压缩版:window(rar,zip) linux(tar,tar.g
大数据技术基础-- Linux文件系统结构 一、Linux文件系统结构: Linux下的文件系统为树形结构,入口为/ 树形结构下的文件目录,为文件的根目录:无论哪个版本的Linux系统,都有这些目录,这些目录应该是标准的,不同的Linux发行版本的略有差异,但总体来说大多是一致的。 1、rootfs: 根文件系统 / :文件系统的入口,为根目录,是最高一层目录。 /boot:系统启动相关的文件,如内核、以及g
ES使用脚本进行局部更新的排错记录 初学Elasticsearch,在按照《Elasticsearch服务器开发(第2版)》进行学习的过程中,在P17页中1.4.5 更新文档小节,使用脚本对文档进行局部更新的时候遇到了如下报错: ~ curl -XPOST http://127.0.0.1:9200/blog/article/1/_update -d '{"script": "ctx._source.content=\"new c
常用排序算法(包括:选择排序,堆排序,冒泡排序,选择排序,快速排序,归并排序) 直接插入排序:在序列中,假设升序排序1)从0处开始。1)若走到begin =3处,将begin处元素保存给tmp,比较tmp处的元素与begin–处元素大小关系,若begin处3)以此类推,依次走完序列。时间复杂度:O()代码如下://Sequence in ascending ordervoid InsertSort(int* a,int size){assert(a);for (int
Python爬虫和情感分析详解 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果。 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着以豆瓣影评为例介绍文本数据的爬取,最后使用文本分类的技术以一种机器学习的方式进行情感分析。由于内容覆盖面巨大,无法详细道尽,这篇文章旨在给那些对相关领域只有少量或者没有接触的人一个认知的窗口,希望激发读者自
新型数据准备工具来袭 你还在使用传统数据仓库架构吗? 越来越多的业务分析师正在提升自身编写临时查询和分析算法的能力。这些临时查询和分析算法用来寻找企业数据存储中的有用信息,为企业做业务决策时提供更多数据。随着企业员工越来越精通于使用分析工具,他们当中越来越多的人发现,传统的数据仓库架构阻碍了他们分析某些重要数据的能力。 新兴的自助型数据准备工具可以帮助业务分析师、数据科学家和其他最终用户绕过数据仓库,完成数据集成和制备过程的关键部分。而我们说数
Hadoop的shell脚本分析 这些天一直学习hadoop,学习中也遇到了许多的问题,主要是对hadoop的shell脚本和hadoop的源码概念不够清楚,所以我就对hadoop的bin目录下的shell脚本进行了研究,有一些成果想记录下来,也希望大家前来批评指正。 分析原因: 很多hadoop的初学者对hadoop的脚本不是很清楚,不知道为什么可以在命令行中启动hadoop,也不知道为什么有时在命令行中运行hadoop命令时