mason_2022
码龄14年
求更新 关注
提问 私信
  • 博客:30,595
    30,595
    总访问量
  • 12
    原创
  • 7
    粉丝
  • 149
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2011-02-02

个人简介:DLUT,心有猛虎,脚踏蔷薇。

博客简介:

yujishi2的专栏

查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得8次评论
  • 获得26次收藏
创作历程
  • 5篇
    2017年
  • 3篇
    2016年
  • 5篇
    2013年
TA的专栏
  • 算法经验
    11篇
  • 架构总结
  • spark相关
    1篇
  • 机器学习
    2篇
  • thrift源码阅读
  • hadoop源码阅读
  • 搜索,推荐,广告
    1篇
  • 自然语言处理
    1篇

TA关注的专栏 10

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习自然语言处理图像处理nlp
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

kaggle MovieSentiment 情感分类的简单套路

问题:简单的对电影评论进行情感分类的问题方案:采用了最基础的基于tfidf的向量化和word2vec向量两种方案,供大家参考。评分:tfidf在0.84左右,word2vec在0.86左右。源码如下。点击打开链接细做的话,还可以考虑ensemble主题向量,以及模型融合,应该效果会更好一些。
原创
发布博客 2017.09.19 ·
1426 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

titanic的几种模型尝试

titanic的几种模型尝试 代码如下titanic是简单的入门比赛,因为数据集很小方便实验,所以这里用titanic实践了lr,gbdt,voting,dnn的方法,不过最终还是没上0.8。
原创
发布博客 2017.09.18 ·
732 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

对于gbdt的一些理解

看了很多版本的解释,最后确定的理解是。相对于lr每次用sgd算法迭代时,每条样本用此条样本的梯度来迭代。gbdt每次迭代,实际上是用所有样本数据的残差重新进行一次训练,得到一个弱分类器。而这个弱分类器的具体训练方法,是通过对每条样本的损失函数计算梯度,得到每条样本的梯度dj。再用每条样本的梯度来拟合一颗决策树。之后再对每条样本都计算步长。最后得到每条样本的步长和经过决策树拟
原创
发布博客 2017.09.07 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python实现带l1正则化的逻辑回归,采用sgd。

在开源基础上增加l1增则化和中止条件,测试效果并不好,暂时供大家参考指正。 训练数据去这里取,http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/#!/usr/bin/python# Logistic Regression on Diabetes Datasetfrom random imp
原创
发布博客 2017.08.23 ·
3933 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

业务同学入门搜索,推荐的一些套路方案

一晃半年。。。看了很多项目,自己摸索了很长时间,也接手了搜索系统,得到了一些新的经验,下面都是些不高大上的实用套路技巧,做业务的同学可能会感觉对搜索推荐广告系统很感兴趣但不知如何入门。 我极其讨厌某些大厂某些高工有套路却不共享,整些高大上的ppt算法数学唬人,让大家入不了门,mmp。所以这里与大家共享这些入门套路经验。还是那句话,有问题请尽情喷,我喜欢交流。 1.推荐,搜索的核心思路都分为两步:召
原创
发布博客 2017.06.29 ·
2653 阅读 ·
6 点赞 ·
0 评论 ·
11 收藏

leetcode Odd Even Linked List

对于网上的解法如下,class OddEvenLink{ public: LinkNode* oddEvenList(ListNode* head) { if(!head) return head; ListNode* first = head ListNode* second = head->next; ListNode* temp = secon
原创
发布博客 2016.09.22 ·
324 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

关于基于物品的协同过滤

背景网上有很多描述协同过滤算法的文章,有一些对基于物品的协同过滤的理解是错误的。基于物品的协同过滤,本质上是假设某用户在某短时间内发生行为的对象物品们具有相似性。
原创
发布博客 2016.08.19 ·
467 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java实现spark streaming与kafka集成进行流式计算

java实现spark streaming与kafka集成进行流式计算背景:网上关于spark streaming的文章还是比较多的,可是大多数用scala实现,因我们的电商实时推荐项目以java为主,就踩了些坑,进行了java版的实现,代码比较意识流,轻喷。流程:spark streaming从kafka读用户实时点击数据,过滤数据后从redis读商品相似度矩阵实时计算兴趣度,并将结果写入re
原创
发布博客 2016.08.19 ·
14979 阅读 ·
0 点赞 ·
0 评论 ·
16 收藏

3-10最大长方体问题

。。。动态规划题越来越难了 时常是一下午一道题 还有大半是看别人代码看懂的一小部分 反正是爱好吧 。。。 其实坚持长了 慢慢就成爱好了话说这题的基础是最大子段和问题 由最大子段和问题又可求最大子矩阵 进而求得最大长方体 这代码是别人写的 我尽量注释我的理解。。。#include #include #include using namespace std;int
翻译
发布博客 2013.09.06 ·
1665 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

3-6租用游艇问题

本题也是简单的dp吧。和上一题是一样的思路,由底向上递推,dp的典型特征。阶段f[i][j]表示从i到j的最少佣金。#include #include using namespace std;int f[100][100];int main(){    freopen("in.txt","r",stdin);    int n;    cin
原创
发布博客 2013.09.02 ·
782 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

3-5乘法表问题

此题思路很清晰,可以作为dp的模板。设输入字符串为s。阶段f[i][j][0]代表从s[i]到s[j]值为a的加括号方式数目。同理f[i][j][1]为b,f[i][j][2]为c。则根据题目给的乘法表 设i最优值为f[0][n-1][0].#include #include #include using namespace std;int f[100][1
原创
发布博客 2013.09.02 ·
673 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

3-4 数字三角形问题

要求走法有两种 ,从下或从右下。设阶段m[i][j]为从i行j列到底部的最大和,那么本题的解为m[1][1].决策为if(m[row+1][col]>m[row+1][col+1])  即取两种走法的较大者。            m[row][col]+=m[row+1][col];            else            m[row][col]+=m[row+1]
原创
发布博客 2013.09.01 ·
540 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

算法设计与分析习题3-3 石子合并问题直线排列最大得分

此题有直线,圆形两种问法。 分别有最大得分最小得分解法。简单的dp。直线最大得分#include #include using namespace std;int main(){    freopen("in.txt","r",stdin);    int n;    cin>>n;    int a[100],m[100][100]; 
原创
发布博客 2013.08.31 ·
1977 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏