R语言与机器学习学习笔记(分类算法)(2)决策树算法

算法二:决策树算法

决策树定义

        首先,我们来谈谈什么是决策树。我们还是以鸢尾花为例子来说明这个问题。


       观察上图,我们判决鸢尾花的思考过程可以这么来描述:花瓣的长度小于2.4cm的是setosa(图中绿色的分类),长度大于1cm的呢?我们通过宽度来判别,宽度小于1.8cm的是versicolor(图中红色的分类),其余的就是virginica(图中黑色的分类)

      我们用图形来形象的展示我们的思考过程便得到了这么一棵决策树:


         这种从数据产生决策树的机器学习技术叫做决策树学习, 通俗点说就是决策树,说白了,这是一种依托于分类、训练上的预测树,根据已知预测、归类未来。

       前面我们介绍的k-近邻算法也可以完成很多分类任务,但是他的缺点就是含义不清,说不清数据的内在逻辑,而决策树则很好地解决了这个问题,他十分好理解。从存储的角度来说,决策树解放了存储训练集的空间,毕竟与一棵树的存储空间相比,训练集的存储需求空间太大了。

决策树的构建

  一、KD3的想法与实现

      下面我们就要来解决一个很重要的问题:如何构造一棵决策树?这涉及十分有趣的细节。

      先说说构造的基本步骤,一般来说,决策树的构造主要由两个阶段组成:第一阶段,生成树阶段。选取部分受训数据建立决策树,决策树是按广度优先建立直到每个叶节点包括相同的类标记为止。第二阶段,决策树修剪阶段。用剩余数据检验决策树,如果所建立的决策树不能正确回答所研究的问题,我们要对决策树进行修剪直到建立一棵正确的决策树。这样在决策树每个内部节点处进行属性值的比较,在叶节点得到结论。从根节点到叶节点的一条路径就对应着一条规则,整棵决策树就对应着一组表达式规则。

      问题:我们如何确定起决定作用的划分变量。

       我还是用鸢尾花的例子来说这个问题思考的必要性。使用不同的思考方式,我们不难发现下面的决策树也是可以把鸢尾花分成3类的。


        为了找到决定性特征,划分出最佳结果,我们必须认真评估每个特征。通常划分的办法为信息增益和基尼不纯指数,对应的算法为C4.5和CART。

        关于信息增益的定义烦请参阅百度百科,这里不再赘述。

        直接给出计算熵与信息增益的R代码:

1、  计算给定数据集的熵

calcent<-function(data){
   nument<-length(data[,1])
   key<-rep("a",nument)
   for(i in 1:nument)
       key[i]<-data[i,length(data)]
   ent<-0
   prob<-table(key)/nument
   for(i in 1:length(prob))
   ent=ent-prob[i]*log(prob[i],2)
   return(ent)
}


           我们这里把最后一列作为衡量熵的指标,例如数据集mudat(自己定义的)

> mudat

  x y z

1 1 1 y

2 1 1 y

3 1 0 n

4 0 1 n

5 0 1 n

计算熵

> calcent(mudat)

        1

0.9709506

     熵越高,混合的数据也越多。得到熵之后,我们就可以按照获取最大信息增益的方法划分数据集

 

  • 3
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值