makefile使用 makefile葵花宝典_Met-ShiZi的博客-CSDN博客什么是makefile?或许很多Winodws的程序员都不知道这个东西,因为那些Windows的IDE都为你做了这个工作,但我觉得要作一个好的和professional的程序员,makefile还是要懂。这就好像现在有这么多的HTML的编辑器,但如果你想成为一个专业人士,你还是要了解HTML的标识的含义。特别在Unix下的软件编译,你就不能不自己写makefile了,会不会写makefile,从一https://blog.csdn.net/yr
docker常用命令(持续更新......) docker images 列出本地docker镜像docker images -qa 只列出镜像iddocker search ubuntu 搜索ubuntu镜像docker search --limit 5 ubuntu 只列出5个Ubuntu镜像docker search ubuntu --filter "is-official=true" 搜索是官方的ubuntu镜像docker search ubu.
pytorch使用多GPU # 查看几块GPUimport torchprint(torch.cuda.device_count())# 查看显卡配置信息nvidia-smi# 单主机多块GPU使用device = torch.device("cuda:0" if torch.cuda.is_avaliable() else :"cpu")device0 = torch.device("cuda:0")device1 = torch.device("cuda:1")net = torch.nn.DataPar.
opencv-C++调用torch-python训练好的网络 # 自己的模型为:modeltraced_script_module = torch.jit.trace(model, src_inp)traced_script_module.save("model.pt")
ubuntu修改默认python版本 sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 1sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 2#1和2为优先级sudo update-alternatives --config python#这个指令可以切换任意一个版本为默认版本。...
linux常用命令 1)查看文件类型:file file_namefile dir_name2)查找文件:find PATH -name FILENAMEeg: find / -name test.cppwhich file_namewhereis file_name3)文件压缩和打包:gzip/gunzip:压缩和解压缩单个文件eg: gzip test.cpp # 压缩文件以.gz结尾gunzip test.cpp.gztar: 能将整个目录打包eg: tar -zcvf.
kaggle的猫狗分类 import osimport numpy as npfrom PIL import Imageimport torch.nn.functional as Fimport torch.optim as optimimport torchimport torch.nn as nnimport torch.nn.parallelimport torch.optimimport torch.utils.datafrom torch.utils.data import Dataset, Dat.
conda创建和删除环境 # 检查当前conda版本conda -V# 查看已有的虚拟环境conda env list# 创建虚拟环境conda create -n env_name python=x.x# 删除虚拟环境conda remove -n env_name --all# 激活虚拟环境conda activate env_name# 关闭虚拟环境conda deactivate# 切换环境conda -n env_name# 关闭自动打开的虚拟环境conda config -.
常用资源连接 (1)文献翻译工具,HammerPDF,支持win,Mac,Linux:https://github.com/HammerPDF/Smart-Scientific-Reader/releases
图像分类、目标检测、图像分割----简介 1)图像分类:公开数据集: (1)MNIST:10个类别,手写数字体数据集,6万条训练数据和1万条测试数据,28*28的灰度图; (2)FashionMNIST:10个类别,6万条训练数据和1万条测试数据,28*28的灰度图,衣服、裤子、鞋子等; (3)CIFAR10:10个类别,5万条训练数据和1万条测试数据,32*32彩色图,飞机、汽车、猫、狗等; (4...